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Abstract
Similarity between neural representations is often quanti-
fied by measuring alignment of the representations over a
set of natural stimuli that are relatively far apart in stimu-
lus space. However, systems with similar global structure
can have strikingly different sensitivities to local stimu-
lus distortions, suggesting a need for metrics that com-
pare local sensitivities of representations. We propose
a framework for comparing a set of image representa-
tions in terms of their sensitivities to local distortions. We
quantify the local geometry of a representation using the
Fisher information matrix, a standard statistical tool for
characterizing the sensitivity to local stimulus perturba-
tions, and use this to define a metric on the local geome-
try of representations near a base image. This metric may
then be used to differentiate a set of representations, by
finding a pair of “principal distortions” that maximize the
variance of the representations under the metric. We ap-
ply our method to models of the early visual system and
to a set of deep neural network (DNN) models.
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Introduction
Similarity between neural representations is often quantified
by measuring alignment of neural responses to a set of stim-
uli that are relatively far apart in stimulus space (Kriegeskorte,
Mur, & Bandettini, 2008). However, neurals systems with sim-
ilar global structure can have strikingly different sensitivities to
local stimulus distortions (Szegedy et al., 2013), suggesting
a need for methods that compare local sensitivities of neu-
ral representations and, in particular, highlight differences be-
tween systems even when global structure seems similar.

We propose a framework for comparing a set of image rep-
resentations in terms of their sensitivities to local distortions,
which builds on existing methods (Berardino, Ballé, Laparra,
& Simoncelli, 2017; Zhou, Chun, Subramanian, & Simoncelli,
2023). We quantify the local geometry of a representation us-
ing the Fisher information matrix (FIM), a standard statistical
tool for characterizing the sensitivity to local stimulus pertur-
bations, and use this to define a metric on the local geometry
of representations near a base image. This metric may then
be used to optimally discriminate a set of representations, by
finding a pair of “principal distortions” (PDs) that maximize the
variance of the representations under this metric.

We apply our method to a nested set of models of the
early visual system to identify distortions that differentiate
these models and can potentially be used to evaluate how
well these models predict human visual sensitivities. We

then apply our method to a set of visual deep neural net-
works (DNNs) with varying architectures and training proce-
dures. We find distortions that allow for visualization of dif-
ferences in the sensitivities between layers of the networks
and DNN architectures. We further explore differences be-
tween standard ImageNet trained networks and their shape-
bias enhanced counterparts, and between standard networks
and their adversarially-trained counterparts. In all cases, we
illustrate how the method generates novel image distortions
that highlight differences between models.

Principal distortions (PDs)
Given a collection of stochastic image representations, we de-
velop a method for comparing their local geometries around
an image s. We assume that each representation is defined by
a conditional density p(r|s), where r is a stochastic response
(e.g., spike counts or noisy model responses). The local sen-
sitivity of a representation can be expressed in terms of the
FIM III(s) := Er∼p(r|s)[∇s log p(r|s)∇s log p(r|s)⊤], which has
been used to link neural representations to perceptual discrim-
ination. Specifically, the local sensitivity of a representation at
a stimulus s to a distortion uuu is given by d(uuu) :=

√
uuu⊤III(s)uuu.

Due to the high-dimensionality of images, a comprehensive
comparison of local sensitivities of representations is impracti-
cal, so it is useful to develop a method for choosing distortions
along which to assess and compare representations.

Building on “eigen-distortions” (Berardino et al., 2017) for
probing the local geometry of a single image representa-
tion, Zhou et al. (2023) proposed comparing two image rep-
resentations pA(r|s) and pB(r|s) by choosing “generalized
eigen-distortions” that extremize the ratio of their sensitivities:
εεε1 = argmaxuuu dA(uuu)/dB(uuu) and εεε2 = argminvvv dA(vvv)/dB(vvv).
The optima can be expressed in closed form, but the method
is limited to pairwise model comparisons.

To compare N > 2 image representations, we re-express
the generalized eigen-distortions as the solution to the op-
timization problem: {εεε1,εεε2} = argmaxuuu,vvv muuu,vvv(IIIA(s), IIIB(s)),
where muuu,vvv(·, ·) is a (pseudo-)metric on the FIMs (at image s)
defined in terms of the log sensitivity ratios to distortions uuu,vvv:

muuu,vvv(IIIA, IIIB) :=
∣∣∣∣log

dA(uuu)
dA(vvv)

− log
dB(uuu)
dB(vvv)

∣∣∣∣ . (1)

We then optimize over distortions so as to maximize the vari-
ance of the N representations A1, . . . ,AN under this metric:

{εεε1,εεε2}= argmax
uuu,vvv

N

∑
i=1

N

∑
j=1

m2
uuu,vvv(IIIAi , IIIA j)

and refer them as “principal distortions” (Feather, Lipshutz,
Harvey, Williams, & Simoncelli, 2025).
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Figure 1: A) Four nested early visual models (LN is the most
basic, LGN is the full model). B) Natural image s and principal
distortions {εεε1,εεε2} for differentiating the models. C) Log sen-
sitivity ratios of the two principal distortions (filled circles) and
two random distortions (hollow circles) for each model.

Early visual models
We generated PDs for a nested family of models of the early
primate visual system (Fig. 1). The full model (LGN) con-
tains two parallel cascades representing ON and OFF center-
surround filter channels, rectification, and both luminance and
contrast gain control nonlinearities (Fig. 1A). The other mod-
els are reduced versions of this model. The filter sizes, am-
plitudes, and normalization values of each model were pre-
viously fit separately to predict a dataset of human distortion
ratings (Berardino et al., 2017).

The optimized PDs {εεε1,εεε2} at a base image s visual dis-
tinct (Fig. 1B) and separate the models (in terms of their log
sensitivity ratios) far more than random distortions (Fig. 1C).
Future work with human perceptual experiments could quan-
tify human sensitivities to the PDs and then compare them to
the models via the metric defined in equation 1.

Deep neural networks (DNNs)
DNNs, originally developed for object recognition, have also
been examined as models of the primate visual system
(Yamins & DiCarlo, 2016). Numerous models have been pro-
posed, but many perform quite similarly on behavioral tasks
or neural benchmarks (Schrimpf et al., 2018).

We demonstrate that PDs can be used to probe for differ-
ences in the local geometry of the DNN representations and
how these differences are due to architecture or training pro-
cedure (Fig. 2). Notably, depending on the training procedure,
the PDs would either separate the DNN layers by architecture
or training procedure. These examples demonstrate that PDs
can be used to separate collections of similar models, and
points to its utility in probing complex high-level representa-
tions.
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Figure 2: Comparison of N = 26 layers from AlexNet and
ResNet50 variants trained to (A) increase “shape-bias” by
training on Stylized Image Net (SIN) (Geirhos et al., 2019)
or (B) reduce adversarial vulnerability via adversarial training
(AT) (Feather et al., 2023). In each case, we plot the mean log
sensitivity ratios of the PDs computed for 100 random images
(top) and show an example base image and PDs (bottom). (A)
When comparing DNNs trained on ImageNet versus SIN, the
PDs separate DNNs by architecture, suggesting that changes
in local geometry induced by SIN are small relative to those in-
duced by the architecture. AlexNet was more sensitive to dis-
tortions in non-smooth regions of the image, while ResNet50
was more sensitive to distortions in smooth regions of the im-
age. (B) When comparing DNNs and AT DNNs, the PDs reli-
ably separated the model classes by training type rather than
architecture, suggesting that AT notably influenced the local
geometry of the DNN representations. The PDs were visu-
ally different from those shown in (A): AT networks were more
sensitive to distortions in color contrast across boundaries.
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