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Abstract
Speech recognition involves storing and integrating se-
quentially presented information. Recent work in cognitive
neuroscience has identified temporal characteristics in hu-
mans’ neural encoding of speech that may facilitate this
process. A modeling study found similar properties in
a self-supervised learning model trained on raw speech,
suggesting these properties can arise without prior lin-
guistic knowledge. In this work, we further explore the
domain specificity of the same properties through testing
representations of speech extracted from a model only
trained on non-speech audio. The model replicated key as-
pects of the temporal characteristics, implying they might
not be specific to speech perception, but rather features
of general auditory processing.
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Speech recognition involves mapping continuous acoustic
signals to a sequence of discrete linguistic symbols. While
identifying individual phones is non-trivial in itself, extracting
lexical items requires successive phones to be tracked and
integrated. This means multiple phones need to be encoded
simultaneously, as well as their relative order. This temporal in-
formation is crucial for differentiating between words composed
of the same phonemes arranged in different orders, e.g. tap,
apt, pat. Another challenge lies in the often ambiguous bound-
aries between words or morphemes, which must be resolved
to partition a sequence of phones before aggregating them into
meaningful units. Despite these issues, speech recognition
unfolds in the human brain with little conscious effort.

Gwilliams, King, Marantz, and Poeppel (2022) analyzed
MEG recordings of humans listening to short narratives, and
identified several properties that are absent from the corre-
sponding acoustic signals. Consistent with earlier findings
(Khalighinejad, Cruzatto Da Silva, & Mesgarani, 2017), they
found that phone representations are maintained in the brain
well beyond their presence in the acoustics. During this period,
the encoding pattern of a phone evolves dynamically over time,
rather than remaining static. Together, these properties could
allow the brain to simultaneously maintain multiple successive
phones, as well as their relative order, through jointly encoding
phonetic and temporal information. A subsequent modeling
study (Liu, Tang, Feldman, & Goldwater, 2024) found that a
predictive learning model trained on unlabeled raw speech —
contrastive predictive coding (CPC) (Oord, Li, & Vinyals, 2018)
— exhibits similar characteristics. Their results suggest that
these properties can arise without top-down supervision from
linguistic units.

In this work, we further evaluate the domain specificity of
these temporal dynamics. That is, we ask whether these pat-

Figure 1: Average decoding accuracy for phoneme category
given model representations or acoustic features for each
frame within a 1200ms sliding window centered on phone on-
set. The shaded area shows the average duration of a phone.

terns reflect general features of auditory processing. To this
end, we tested an implementation of CPC that was only ex-
posed to non-speech audio during training. We fed the same
speech stimuli into CPC-audio and CPC-speech and analyzed
corresponding representations to compare the temporal dy-
namics of phonetic encoding in the two models.

Models Both models were LSTM-based recurrent neural net-
works trained with the objective of predicting upcoming acous-
tics, i.e. the next 120ms of input. The CPC-audio model we
used was trained on 500 hours of animal vocalization and envi-
ronmental sounds (Poli, Schatz, Dupoux, & Lavechin, 2024),
and the CPC-speech model we used was the same implemen-
tation (Nguyen et al., 2020) considered in Liu et al. (2024),
which was trained on 6000 hours of English audiobooks.
Decoding analyses Following previous work, we used time-
resolved decoding to characterize the time course of phonetic
encoding in model representations. This involves training a
separate decoder (multinomial logistic regression), which takes
in a single representation and predicts the phoneme label, for
each time step (latency) with respect to the onset of a phone.
To map out the decodable window of a phone, we tested each
trained decoder on the same time step as it was trained on,
with a held-out set of representations. To evaluate how long
each encoding pattern persists within the decodable window,
we performed temporal generalization analysis, where we
tested each trained decoder on all time steps. The speech
stimuli we used to train and test the decoders were drawn from
a 5.4-hour subset of an English audiobook corpora (Panayotov,
Chen, Povey, & Khudanpur, 2015).

Results
Decodable window As shown in Fig 1, the phoneme cate-
gory of a phone remains decodable in CPC-audio represen-
tations up until 400ms after phone onset, which is almost the



(a) MEG recordings (figure from Gwilliams et al. (2022)) (b) Log Mel spectrogram (results from Liu et al. (2024))

(c) CPC-speech (results from Liu et al. (2024)) (d) CPC-audio (our new results)

Figure 2: Temporal generalization (TG) results for (a) MEG signals, (b) log Mel acoustic features, (c) CPC-speech, and (e)
CPC-audio. Contours represent decoding accuracy, within which higher color intensity indicates higher accuracy. Contours
correspond to accuracy thresholds of 0.4 for CPC-speech and CPC-audio, or 0.2 for log Mel spectrogram features.

same as how long phonetic information is maintained in CPC-
speech. Although CPC-audio yields a lower decoding accuracy
than CPC-speech, it is still much higher than acoustic features
(log Mel spectrograms), suggesting the model has acquired
features useful for distinguishing phonemes despite only being
trained for general auditory processing without any exposure
to speech. However, CPC-audio does differ from CPC-speech
in its limited support for predicting upcoming phones before
their onset. This implies the predictive effect mostly comes
from statistical regularities that are specific to speech.

Temporal generalization The temporal generalization (TG)
analysis produces a matrix of dimension (training time step)
× (testing time step), which we visualize as a contour plot. To
facilitate direct comparison with Gwilliams et al.’s results, we
followed them in grouping phone tokens into sets according
to their position in the word, and applying TG analysis sepa-
rately to each set. These sets correspond to phones in the first
through fourth positions within a word (p1–p4) and phones in
the final through fourth-to-last positions (p-1–p-4), yielding 8
TG matrices, visualized as 8 contours in a single plot. Each
contour is shifted by the average onset latency of its corre-
sponding phone onset relative to the word onset, ensuring that,
as a whole, the plot reflects the progression of each phonetic
encoding while a word unfolds.

From Fig 2c-d, we can see slanted, elongated contours in

the temporal generalization results of both CPC-audio and
CPC-speech, that resemble those Gwilliams et al. found in
MEG recordings (Fig 2a). For all phone positions, the diagonal
axis of the contour, which signifies the period that a phone
is decodable from the representations, is much longer than
any of its horizontal widths, which show the duration that each
neural pattern persists. In contrast, the TG contours of log Mel
features show stabler encoding patterns, indicating that the
dynamic encoding in both models arises through learning.

At the same time, the TG results of CPC-speech exhib-
ited subtle patterns not present in CPC-audio, which reflect
speech-specific characteristics. These include incrementally
downward shift of successive contours along the vertical axis,
and the significantly larger contour corresponding to p1. These
point to increasingly early prediction of later phones in a word
and longer retention of word-initial phones, respectively, both
of which were also identified in human speech processing
(Saffran, Aslin, & Newport, 1996; Gwilliams et al., 2022). The
absence of these characteristics in CPC-audio’s TG results
suggests that these properties arose specifically through learn-
ing from speech.

Despite these differences, we overall found persistent and
dynamically evolving encoding of phones in a predictive learn-
ing model trained on non-speech audio, suggesting these prop-
erties might be more domain-general than previously thought.
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