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Abstract
As humans we are naturals at learning multiple related
tasks together. Which mechanisms do we use to transfer
knowledge between tasks and generalize to new ones?
Here, we conducted an MEG study in which N=42 partic-
ipants virtually fed animals with fruits. The animals had
different preferences, serving as tasks, while the position
of the fruits could be transferred. Behaviorally, we found
that people are using a hybrid model with transferable
features and task-specific values. In MEG data, we found
enhanced activation of the parietal cortex for successful
transfer learning compared to within-task learning.
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Introduction
Multi-task Learning is a part of our everyday behavior. We
act in relatively stable environments with multiple goals or
tasks, e.g. we go shopping in the same supermarket with dif-
ferent shopping lists. However, while Multi-task Reinforcement
Learning is an important topic in robotics (Barreto et al., 2019;
Andrychowicz et al., 2017), there is little research in human
behaviour (Tomov, Schulz, & Gershman, 2021; Flesch, Saxe,
& Summerfield, 2023), and nearly none of it uses brain imag-
ing (Hall-McMaster, 2025).

Formally, multi-task learning refers to jointly learning a set
of M related tasks by using a shared representation (Caruana,
1997). Here, we run an MEG study to see if people use these
shared representations, and how performance depends on M.
We use behavioral modelling to categorize trials as model-
based and model-free (with and without knowledge transfer)
and we find differences in the neural activation of the two kinds
of trials.

Experiment
Before the experiment, participants were instructed on how
to feed 6 animals with 8 fruits. Specifically, animals had cer-
tain needs corresponding to their size: small animals needed
small fruits, big animals needed big fruits, and so on. On top
of this need (boxes in Fig. 1A), which was rewarded by 1 point
if satisfied, animals had a preference (thick lines in Fig. 1A),
which resulted in two points, if satisfied. This animal-fruit map-
ping stayed constant throughout the experiment and partici-
pants were trained to know it well.

The experiment itself required them to collect fruits for the
current animal from a market (Fig. 1B). At first, they did not
know the arrangement and had to explore different paths, as
they could not see the whole tree. An optimal strategy would
be to memorize the positions of all the fruits, and to use this
mental map for planning the best path even for new animals.
Fruits stayed at the same positions within blocks of 9 trials
(Fig. 1C), but after each block they were rearranged, such
that participants had to relearn. Each block was subdivided
into 6 training trials, within which M = 1,2, or 3 different an-
imals could occur, and 3 test trials with 3 new animals. We

instructed the number of training tasks M at the start of each
block. Participants completed 30 blocks in the MEG scanner
(Fig. 1D). They saw the animal, defining the task, decided for
an action by pressing the left or right button, reached a fruit on
the first level, took a second action, and arrived at the second
fruit. At the end of a trial, the cumulative reward was shown
in the form of smileys (rewards per fruit are not shown). The
reward along a path ranged from 0 to 3, however, crucially, the
maximum reward in any given block was not known a priori,
as it depended on the specific arrangement of the fruits (i.e. 3
points were not always achievable for all animals). Moreover,
there were 8 fruits in total, but only 6 states, ensuring that the
fruits in unvisited states could not be inferred by exclusion.
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Figure 1: A) Participants are pretrained to know how reward-
ing the fruits are to the animals. B) They accumulate reward
by collecting fruits along paths in a binary tree. C) In every
block, there are 6 training trials with M = 1,2,3 different ani-
mals, and 3 test trials with new animals. After each block, the
fruit arrangement changes. D) Participants only see the cur-
rent animal, fruits, and cumulative reward, not the whole tree.
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Figure 2: A) Performance of humans and models over trials.
B) Model frequency in training and test. C) Human perfor-
mance depending on the number of training tasks M.

Behavioural results

N=42 participants (20 female, mean age: 27.5) took part in
the MEG study. The session took 90min and they were paid
a bonus relative to their overall performance. Fig. 2A shows
their performance over trials (black). Reward is normalised
to be 1 for the maximal possible reward given the current en-
vironment and animal. It rises over the 6 training trials, but
drops with the start of the test trials, which had new animals.

We modelled this behaviour with three agents. Firstly, the
model-based agent (MB; in blue) acquires a mental map of the
fruit positions and uses planning to predict the best path for a
given animal. Thereby, it can generalise even to new animals,
and shows the least performance drop in test. On the other
extreme, the model-free agent (MF; in red) does not represent
the fruits at all, but only stores the rewards per fruit separately
for each animal. For each new task, it has to guess, leading to
random performance in test. Finally, the hybrid model (HM; in
magenta) combines the values from MB and MF agent with a
weighting factor: VHM =w ·VMB+(1−w) ·VMF . Here we fixed
w = 0.5. HM shows a moderate performance drop in test. All
models had a temperature parameter τ for random exploration
as well as an uncertainty bonus β for directed exploration to-
wards unvisited states U . We tuned τ and β per subject and
computed model likelihoods p ∝ exp(−(V + βU)/τ). In the
simulation, models were conditioned on human observations.

Fig. 2B shows the model frequency split by training and test.
In training, the hybrid model was the more frequent model, fit-
ting 26 participants best, while in test, MB won with 24 sub-
jects. Interestingly, no participant behaved in a purely model-
free way, neither in training nor in test. Furthermore, we see
an effect of manipulating the number of training tasks M on
performance (Fig. 2C). In training, there is a significant de-
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Figure 3: A) Source-localised evoked potentials in MB (blue)
and MF (red) trials. Grey windows mark stimulus presentation.
Black dots mark clusters of significant difference (p < 0.05).
B) Significant difference on cortex (cluster permutation test).

crease of performance with increasing M (β = −0.0427, p <
0.001), due to increased switch costs. During test, on the
other hand, participants benefited from having seen more
training tasks (β = 0.0355, p < 0.001), as they had a more ro-
bust representation of the market. This may also be mediated
by more exploration, measured as the number of visited paths
during training depending on M (β = 0.3774, p < 0.001).

MEG results
To understand the neural mechanism of knowledge transfer
across tasks, we looked at trials with choices that were ei-
ther more likely under the MB or under the MF model. By
design, MB transfers values perfectly, whereas MF can only
learn within task. We found significant differences of neural
activity between MF and MB trials when planning the path for
the current task (Fig. 3A), i.e. after seeing the animal, leading
up to the button press (at fruit onset), and during the first fruit.
The cortical distribution (Fig. 3B) revealed that model-based
reasoning in our task was accompanied by enhanced activity
in the central parietal cortex. The effect could not be driven by
reaction times, as those did not differ between the two types
of trials (two-sided t-test, t = 0.0578, p = 0.954).

Discussion
In this MEG study, we set out to study how people transfer
knowledge while learning related tasks jointly. We find that
they use a hybrid model of transferable representations (in this
case the fruit arrangement) as well as task specific rewards.
While multi-task learning can be impeded by task switching,
generalisation to new tasks benefits from more robust repre-
sentations. Lastly, we find enhanced activation in parietal cor-
tex for trials that were more in line with model based choices,
specifically during planning. Future work should have a closer
look at alternative transfer mechanisms, for instance the use
of task similarity for generalisation or counterfactual reasoning
for updating other tasks (Andrychowicz et al., 2017).
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