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Abstract

Cognitive control refers to the ability to flexibly coor-
dinate thought and action in pursuit of internal goals.
A standard method for assessing cognitive control in-
volves conflict tasks that contrast congruent and incon-
gruent trials, measuring the ability to prioritize relevant
information while suppressing interference. We evalu-
ated 108 vision-language models on three classic con-
flict tasks and their more demanding ”squared” vari-
ants across 2,220 trials. Model performance corresponds
closely to human behavior under resource constraints
and reveals individual differences. This results indicate
that some form of human-like executive function—albeit
limited—may have emerged in current multi-modal foun-
dational models.
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Introduction

Human behavior is distinguished by its flexibility and goal-
directedness: we can pursue novel, underspecified tasks,
adapt to changing contexts, and manage competing objec-
tives over time (Rasmussen, 1990; Botvinick et al., 2001). At
the core of these abilities lies cognitive control, a set of mech-
anisms that support the dynamic coordination of thought and
action in service of internal goals (Egner, 2023; Badre, 2024),
making it a particularly valuable target for evaluating signa-
tures and guiding the development of prospective general in-
telligence in artificial systems (Anderson, 1983; Russin et al.,
2020; LeCun, 2022).

A standard approach to assessing cognitive control is
through tasks that elicit cognitive conflict, typically by con-
trasting congruent and incongruent trials. In these tasks, par-
ticipants must respond to task-relevant features of a stimu-
lus while ignoring distracting or conflicting ones (MacLeod,
1991). Performance differences between congruent and in-
congruent trials provide a window into the ability to maintain
focus and suppress interference—capacities central to flexi-
ble, goal-directed behavior.

Vision-language models (VLMs) can integrate visual and
textual information and have demonstrated strong perfor-
mance on high-level reasoning benchmarks. Here, we evalu-
ate 108 models on three classic conflict tasks, along with their
more cognitively demanding ”squared” versions, in a large-
scale, strictly controlled setting spanning 2,220 trials. Model
performance corresponds remarkably to human behavior un-
der limited computational resources and reveals robust in-
dividual differences, suggesting emergent cognitive mecha-
nisms for executive functions, though overall competence re-
mains limited in zero-shot, unconstrained settings.

Figure 1: Standard Tasks. In the Stroop task, participants
must indicate the color a word is printed in while disregarding
the word’s meaning. In the Flanker tasks, participants must
identify either the central letter or number while ignoring the
surrounding distractors.

Figure 2: Squared Tasks. In Stroop Squared, participants
select the response option whose word meaning matches the
display color of the target word. In Flanker Squared, they
choose the option where the central letter or number matches
the identity of the surrounding distractors in the target stimu-
lus. The correct response for all example trials shown is the
option on the right.

Methods
We applied classic cognitive control tasks to evaluate mod-
els’ ability to resolve cognitive conflict. Specifically, we im-
plemented the Stroop task (Stroop, 1935) and both the Let-
ter and Number versions of the Flanker task (Eriksen & Erik-
sen, 1974). In parallel, we adapted the ”squared” design intro-
duced by Burgoyne et al. (2023) across all three task types.
This design adds an additional layer of conflict by requiring
subjects to choose among response options that are congru-
ent or incongruent with the target along dimensions already
manipulated in the standard versions of the tasks.

We adopted the squared design for two reasons. First, clas-
sic conflict tasks often show limited between-participant vari-
ability, reducing their reliability for assessing individual differ-
ences (Hedge et al., 2018). In contrast, squared paradigms



Figure 3: Model Performances on Standard and Squared Tasks Compared Between Conditions. Across all standard tasks,
VLMs showed strong congruency effects, with significantly higher accuracy on congruent than incongruent trials: Flanker Letter
(t = 17.88, p < 10−33), Flanker Number (t = 16.85, p < 10−31), and Stroop (t = 8.99, p < 10−14). This pattern extends to the
squared task variants within the comparison between FC and FI trials. VLMs displayed differentiated performance across all four
conditions, with significant contrasts found in nearly all pairwise comparisons (p < .001), except in Flanker Letter, where FI and
SCRI did not differ significantly (t =−0.86, p = .39).

elicit substantially greater variability across participants. Sec-
ond, the increased complexity of squared tasks boosts cog-
nitive demand, which is especially valuable when evaluating
models that perform at ceiling on standard tasks—whether
due to genuine competence or confounding heuristics. For
example, a model biased toward color processing might by-
pass interference in the standard Stroop task, yet still struggle
with the hierarchical conflict in the squared variant.

For the Stroop task, we selected 7 commonly identifiable
colors and crossed them following both the standard and
squared designs, yielding 84 images for the standard ver-
sion (42 congruent [C], 42 incongruent [I]) and 336 for the
squared version (84 each for fully congruent [FC], fully incon-
gruent [FI], stimulus-congruent/response-incongruent [SCRI],
and stimulus-incongruent/response-congruent [SIRC] condi-
tions). For the two Flanker tasks (Letter and Number), we
used all 10 single-digit Arabic numerals and 10 randomly se-
lected letters from the English alphabet, generating 180 im-
ages for each standard task (90 congruent, 90 incongruent)
and 720 for each squared version (180 per condition: FC,
FI, SCRI, SIRC). All stimuli were paired with task-specific
prompts in a binary forced-choice format, with response op-
tions counterbalanced within each task type.

Results
Across all standard tasks, VLMs showed robust congruency
effects, with significantly higher accuracy on congruent than
incongruent trials. This pattern extended to the squared tasks,
where models exhibited clear performance differences across

conflict conditions.
Moreover, robust individual differences emerged across all

tasks, with distinctions becoming more pronounced under in-
creased task difficulty. Standard tasks separated models
into at-chance, conflicted, and near-perfect performers, while
squared tasks further differentiated models by exposing per-
sistent conflict sensitivity—even among high-performing mod-
els like GPT-4o, which resolved standard conflicts but re-
mained vulnerable under hierarchical interference. These pat-
terns closely resemble those observed in humans under con-
strained cognitive resources, as indexed by processing time
(Lee et al., 2025)1. Our data suggest that models engage a
general cognitive control mechanism across tasks, with some
models exhibiting substantially more flexible and consistent
control than others

Conclusion

We showed that model performance closely aligns with human
behavior under resource constraints and reveals robust indi-
vidual differences. These results provide substantial support
for the emergence of a limited form of human-like executive
function in current multimodal foundation models.
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