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Abstract 
Despite causal relationships being inherently 
unobservable in a direct manner, people can infer 
these relationships with limited data. Using a one-
shot causal inference task with fMRI, we investigated 
the inference process at both behavioural and neural 
levels. Our findings reveal that participants 
integrated observed causal evidence with their prior 
beliefs about the underlying causal structures that 
prevailed in the world to infer unobservable causal 
relationships. This process engaged a midbrain 
region linked to dopamine and learning but also a 
specific and circumscribed region of dorsolateral 
prefrontal cortex (dlPFC) in which activity was related 
to several aspects of the inference process. 
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Introduction 
Causal inference is a fundamental cognitive ability that 
enables individuals to learn about and predict the world. 
Humans are adept at causal reasoning even when given 
sparse, ambiguous data (e.g., Corlett et al., 2004). In this 
study, we hypothesised that the nature of inference is 
shaped by people’s prior beliefs about underlying causal 
structures, which constrains the otherwise potentially 
unlimited ways of interpreting the observations (Tervo et 
al., 2016). To understand this process, we designed a 
one-shot causal inference task, in which participants 
inferred causal relationships based on ambiguous 
observations.  

Results 
Participants (n=32) completed a one-shot causal 
inference task in a 3T scanner, involving four trial types 
(Figure 1A). Causal evidence was presented in a two-
stage manner ("two dishes") with causal roles indicated 
by color frames learnt beforehand. Participants saw 
compound foods each comprising two elements (fruits) 
and were informed about whether they caused a 
symptom (an allergic reaction) or not. They then obtained 
more information about one of elements and then finally 
made an inference about the other element. Each trial 
included two rating phases, one before and one after the 

presentation of evidence about one of the elements 
(Figure 1C). Trials were structured to allow belief updates 
about causal structures (Figure 1B). Blocks consisted of 
3–5 trials from a specific condition, with two randomly 
interspersed no-cause trials per block. To ensure one-
shot learning, participants were informed that the same 
fruits would not reappear. 

 
Figure 1: Task design 

Bayesian learner. Causal induction can be considered 
a Bayesian inference process (Gopnik & Tenenbaum, 
2007), wherein observed causal evidence is integrated 
with prior beliefs about underlying causal structures. We 
constructed a Bayesian model (Griffiths et al., 2011) to 
investigate how the task would be solved normatively. In 
this model, the learner holds prior beliefs about causal 
structures, denoted as 𝑝(ℎ),  where ℎ ∈ 𝐻 . Additionally, 
we assume the updating of such beliefs. The simulation 
results illustrate how updating 𝑝(h) influences causal 
inference in the backward blocking condition, with the 
effect decreasing as the probability of a two-cause 
structure increases (Figure 2A).  
Behavioural results. First, participants made 
revaluations of the causal roles of elements even while 
the elements were absent (Figure 2B). In the backward 
blocking trials, participants decreased their causal rating 
of the unexperienced fruit after learning that the other fruit 
from the compound alone caused symptoms. By contrast, 
in the unovershadowing condition, participants increased 
their causal rating of the unexperienced fruit after learning 
that the other fruit did not cause symptoms. Second, we 
compared backward blocking before and after two-cause 
trials to test whether these inferences shifted with 
participants’ beliefs about causal structures. We found 
that, given the same causal evidence, participants’ 
revaluation of the unexperienced fruit significantly 
decreased after two-cause trials (Figure 2C). The effect 
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was more salient for participants who initially held a 
stronger belief in one-cause structure (Figure 2D). 

 
Figure 2: Behavioural results 

Inference during the revaluation phase. We 
performed repetition suppression analysis to test whether 
participants made inferences about the unexperienced 
fruit while observing the outcome of the other item (i.e., 
revaluation phase). If an item's neural representation is 
active during the revaluation phase even when the item 
itself is absent then there should be suppressed activation 
upon its subsequent actual presentation. Consistent with 
this hypothesis, our results revealed significant repetition 
suppression effect in visual and visual association cortex 
regions when comparing post-rating to revaluation 
phases (Figure 3A). A representational similarity analysis 
(RSA) confirmed the existence of fruit-specific 
representations in both early visual cortex (EVC) and 
occipital fusiform gyrus (OFG; Figure 3B). We then 
performed an additional RSA, which revealed a stronger 
representation in OFG of the absent, unexperienced fruit 
during the revaluation phase (i.e., when showing the other 
fruit and associated outcome), when revaluation was 
more pronounced (Figure 3C). 

Figure 3 

Dissociative learning and inference in the brain. 
During the revaluation phase, two distinct updates 
happened: an experienced update based on observed 
outcomes and an inferred update from reasoning about 
the unexperienced fruit (see illustration in Figure 4). We 
found that the experienced update is associated with the 

well-known prediction error related activity in the 
substantia nigra (SN) and ventral tegmental area (VTA; 
Figure 4A) and lateral orbitofrontal cortex (LOFC; Figure 
4B), but these areas did not respond to the inferred 
update. Instead, the extent of the inferred update was 
linked to a distinct pattern of activity in dlPFC (MFG; 
Figure 4B). Moreover, dlPFC activation during revaluation 
was stronger in backward blocking trials before, rather 
than after, the two-cause condition (Figure 4C), 
consistent with the behavioural results (Figure 2C&D). 
More interestingly, our trial-wise analysis revealed that 
the stronger representation of the unexperienced fruit in 
OFG is linked to stronger activity in the dlPFC during 
revaluation phase (Figure 4D). 

 
Figure 4: fMRI results 

dlPFC represents causal structure beliefs. We are 
further interested in understanding how beliefs 
concerning causal structure are represented. We 
calculated participants’ trial-by-trial causal structure 
beliefs ( 𝑝(ℎ), ℎ ∈ 𝐻 ) given their ratings of the 
unexperienced fruit. As well as many other aspects of 
inference, right dlPFC holds representations of causal 
structure beliefs (Figure 4E). 

Discussion 
Participants inferred the causal role of elements in a 
compound even while they were absent. They did this by 
integrating the observation with their prior knowledge of 
the causal structures. Learning from observations is 
associated with prediction error-related activity in both 
midbrain and prefrontal regions. Inference from 
ambiguous observations is linked to dlPFC, which also 
carries information about underlying causal structure. 
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