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Abstract

The human visual system employs extensive long-range
feedback circuitry, where feedforward and feedback con-
nections iteratively refine interpretations through reen-
trant loops (Di Lollo, 2012). Inspired by this neu-
roanatomy, a recent computational model incorporated
long-range modulatory feedback into a convolutional
neural network (Konkle & Alvarez, 2023). While this
prior work focused on injecting an external goal sig-
nal to leverage feedback for category-based attention,
here we investigated its default operation: how learned
feedback intrinsically reshapes representational geome-
try without top-down goals. Analyzing activations from
this model across two passes—feedforward versus mod-
ulated—on ImageNet data, we examined local (within-
category) and global (between-category) structure. Our
results demonstrate that feedback significantly compacts
category clusters: exemplars move closer to prototypes,
and the local structure improves as more near neighbors
fall within the same category. Notably, this occurs while
largely preserving global structure, as between-category
distances remain relatively stable. An exploratory anal-
ysis linking local and global changes suggested a pos-
itive relationship between local compaction and proto-
type shifts. These findings reveal an emergent ”proto-
type effect” where fixed long-range feedback automat-
ically refines local representations, potentially enhanc-
ing categorical processing efficiency without disrupting
overall representational organization. This suggests in-
trinsic feedback dynamics might contribute fundamen-
tally to perceptual organization.

Introduction

Human visual perception is not merely a passive, feedforward
process—it is active and dynamic, shaped by the interaction
of incoming sensory inputs with higher-order cognitive pro-
cesses. This active nature is supported by extensive feedback
circuits that span the visual hierarchy (Gilbert & Li, 2013), in-
cluding prominent pathways from high-level areas such as the
inferotemporal cortex (IT) to intermediate areas like V4, and
from V4 back to early visual cortex such as V1. These feed-
forward and feedback pathways are thought to engage in iter-
ative, reentrant loops that progressively refine perceptual in-
terpretations (Lamme & Roelfsema, 2000; Di Lollo, 2012).

Despite the prevalence of feedback in biological vision,
most deep learning models for visual object categorization are
predominantly feedforward. While achieving remarkable per-
formance, these models often lack mechanisms analogous to
biological feedback, limiting their capacity to model top-down
influences such as attentional steering. Addressing this, a re-
cent computational model introduced fixed long-range mod-
ulatory (LRM) feedback pathways into a convolutional neu-
ral network (Konkle & Alvarez, 2023). In this LRM model,
feedback is implemented via a two-pass process: a feed-
forward pass generates initial representations from input im-

ages, and a subsequent modulated pass enables later-stage
activations to influence earlier-stage representations through
learned channel-to-channel connections. Although previous
research has demonstrated the effectiveness of leveraging
these feedback connections for externally guided, category-
based attention, the default operation of this feedback circuitry
remains less explored. Specifically, how does this learned,
fixed feedback mechanism intrinsically reshape representa-
tions without top-down task goals?

Here, we investigate the representational dynamics in-
duced by default feedback modulation in the LRM model, fo-
cusing on how it alters the geometry of stimulus represen-
tations. Recognizing that representational structure can be
characterized at multiple scales in both humans and mod-
els (Bowman, Iwashita, & Zeithamova, 2020; Muttenthaler et
al., 2023), we examine changes at both local levels (e.g., the
structure within categories) and global levels (e.g., the rela-
tionships between categories) following feedback modulation.

Model & Data
We used the LRM3 model with its defined feedback connec-
tions as detailed in Konkle and Alvarez (2023) to investigate
feedback-driven representational changes. LRM3 achieves
a higher Top-1 ImageNet classification accuracy after feed-
back modulation compared to its initial feedforward pass or
a vanilla AlexNet. Additionally, when evaluated on the Brain-
Score benchmark (Schrimpf et al., 2020), both the feedfor-
ward and modulated LRM3 representations exhibit stronger
correspondence to human neural data than those of standard
AlexNet.

For our analyses1, we extracted and compared activations
from two passes: the initial feedforward pass before modu-
lation (the baseline pass) and the modulated pass after two
cycles of feedback (the modulated pass). Input stimuli com-
prised 300 images from each of 100 randomly selected cate-
gories from the ImageNet dataset (Deng et al., 2009).

Results
Feedback Effects on Local Geometry
First, we investigated whether feedback modulation impacts
local representational geometry by altering the cluster size,
quantified using the distance between exemplars and their
prototypes. For each exemplar image embedding ai jk (acti-
vation for image j in category i at pass k), we computed its
cosine distance to the category prototype pik — defined as
the mean embedding of all images within category i at pass k.
We defined the distance as di jk = 1− cos sim(ai jk, pik).

We compared these exemplar-to-prototype distances be-
tween the baseline pass and the modulated pass. A reduc-
tion in di jk following modulation would indicate that exemplars
are clustering more tightly around their category prototype.
A linear mixed-effects model revealed a significant decrease
in these distances after feedback modulation (M = −.036,

1Code available at: https://github.com/cindyLuo99/
reprGeo LRM.
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Figure 1: Effects of default feedback modulation on representational geometry. (a) Significant cluster shrinkage indicated by
negative change in exemplar-prototype distance (Modulated - Baseline). (b) Increased proportion of neighbors belonging to the
same category in the modulated pass, indicating improved local structure. (c) Category prototype shifts induced by feedback
modulation, visualized in the principal component space. Baseline and modulated prototypes for each category are connected
by a gray dashed line. (d) Correlation between global prototype shifts and local compaction. Error bars indicate standard error
from 5-fold cross-validation (some horizontal error bars are negligible due to small prototype shift variance, ∼ e−6).

p < .001; Fig. 1a). Specifically, exemplar embeddings shifted
closer to their category prototypes, demonstrating that the
feedback process enhances local representational cohesion
and creates more compact category clusters.

Given this observed shrinkage in cluster size, we next as-
sessed whether modulation improves local category preserva-
tion. For each embedding, we computed the proportion of its
k-nearest neighbors (k-NN) belonging to the same category
as itself, systematically varying k from 1 to 300. An increase
in this proportion in the modulated condition (relative to base-
line) reflects improved local categorical structure. As shown
in Fig. 1b, feedback modulation led to a systematic increase
in the proportion of within-category neighbors across all k, in-
dicating enhanced local category consistency.

Feedback Effects on Global Geometry
We then investigated how feedback modulation affects global
representational structure, focusing on the geometry of cate-
gory prototypes. For each category i, we quantify its proto-
type shift as ∆pi = 1− cos sim(pi,1, pi,3), where pi,1 and pi,3
are the category’s prototype before and after modulation, re-
spectively. These shifts were small (average distance = .012),
particularly relative to the average pairwise cosine distance
between different category prototypes in the baseline pass
(average between-category distance = .964). Furthermore,
the average change in these between-prototype distances af-
ter modulation was minimal (average change = .0025). Con-
sistent with this stability, Representational Similarity Analysis
showed a strong correlation between the baseline and mod-
ulated prototype RDMs (ρ = .95, p < .001), indicating high
stability in the overall representational geometry. To visualize
this global structural stability, we conducted PCA on baseline
activations, obtained the first two principal components (PCs),
and plotted all prototypes projected onto these PCs (Fig. 1c).
As indicated in PCA space, category prototypes showed no
consistent drift after modulation. These findings suggest feed-

back modulation largely preserves the global structure of inter-
category relationships.

Relationship Between Local and Global Changes

While the analyses above indicated that feedback modula-
tion primarily impacts local geometry, we conducted an ex-
ploratory analysis to examine any potential relationship be-
tween the observed local cluster compaction and modest
shifts in the global positions of category prototypes. Specif-
ically, do categories experiencing greater global repositioning
also exhibit greater local refinement? To address this, we per-
formed a 5-fold cross-validation procedure where, for each
fold, training set activations were used to compute category
prototype shifts and test set activations were used to compute
local cluster size differences. We found a robust negative cor-
relation (r = −.80, p < .001), indicating that categories with
larger global prototype shifts also exhibited greater local com-
paction (Fig. 1d).

Discussion

Our findings show that feedback modulation intrinsically in-
duces representational adjustments in the visual system, even
without explicit external goals. Locally, feedback robustly en-
hanced categorical structure, leading to more compact cat-
egory clusters. Globally, category prototypes shifted mod-
estly, and inter-category distances remained largely stable.
Together, these results suggest that fixed long-range feedback
connections induce an automatic ’prototype effect’, compact-
ing within-category representations while preserving global
structures. Importantly, this local sharpening helps explain the
consistent boost in classification accuracy we observe after
feedback modulation. More generally, these emergent feed-
back dynamics might naturally refine local representations
without disrupting overall structure, thereby improving down-
stream category-based task efficiency.
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