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Figure 1: We curated four equally-sized image datasets vary-
ing in viewpoint diversity. Four virtual environments were used
as image background.

Abstract

Although convolutional neural networks (CNNs) reach
human-level accuracy on standard object recognition
tasks, they perform poorly when faced with changes in
viewpoint or corrupted images. In this study, we demon-
strate that these two distinct failure modes can be ad-
dressed using a single strategy: training on diverse view-
points. To investigate this, we created artificial image
datasets that systematically vary in viewpoint diversity
while keeping the dataset size constant, to train and eval-
uate CNN object recognition performance. Our results re-
veal a core trade-off between learning speed and gener-
alization performance. On the one hand, models trained
on restricted viewpoints exhibit fast learning and achieve
near-perfect in-distribution accuracy, but they overfit to
specific views, resulting in dramatic performance drops
on unfamiliar viewpoints. On the other hand, training
with diverse viewpoints slows learning but significantly
improves out-of-distribution performance. Notably, ex-
posure to diverse viewpoints also greatly enhances ro-
bustness to common image corruptions. These results
point to a shared mechanism for achieving robustness to
both viewpoint variation and image corruption, and fur-
ther alignment with human performance.
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Introduction

Convolutional neural networks (CNNs) are among the top per-
forming models for object recognition, and are widely used

for studying visual recognition and human-model alignment
(Kriegeskorte, 2015). While recognizing objects from novel,
uncommon viewpoints or with perturbation to the images are
tractable problems to humans, they pose a notable challenge
to CNNs (Geirhos et al., 2018; Madan et al., 2021; Sakai et
al., 2022). One explanation for the CNN generalization lim-
itation could be a lack of viewpoint diversity in the training
sets. Several large computer vision datasets such as Caltech
101 (Fei-Fei, Fergus, & Perona, 2004) and ImageNet (Deng et
al., 2009) do not feature dedicated variation of viewpoints, but
are instead designed to capture a large variety of object cate-
gories. In comparison, exposure to multiple viewpoints plays
a critical role in human and non-human animal object recog-
nition development (Ayzenberg & Behrmann, 2024; Kraebel
& Gerhardstein, 2006; Milivojevic, 2012; Okamura, Yam-
aguchi, Honda, Wang, & Tanaka, 2014; Tarr, 1995; Hayward
& Williams, 2000; Wood & Wood, 2016). While CNNs learn
from restricted viewpoint sets, humans learn from a dynamic
environment where they can actively interact with objects and
see them from multiple viewpoints (Meijer & Van der Lubbe,
2011; Sasaoka, Asakura, & Kawahara, 2010). To better un-
derstand the influence of viewpoint diversity on CNN object
recognition behavior, we leverage the high-maneuverability of
3D objects to curate image datasets that systematically vary in
viewpoint diversity. We evaluate CNN object recognition per-
formance as a function of viewpoint diversity. Furthermore, we
test CNNs on corrupted images to investigate how viewpoint
diversity affects model robustness to perturbations.

Methods

We created four datasets with varying viewpoint diversity
by progressively restricting the camera placement range
(Figure 1) which is defined by the polar (8) and azimuth
angle (¢) of the camera origin. The viewpoint diversity
levels are fixed (0 = m,¢0 = 0.5m), extra restricted (0 ~
U(1.4zm,2m), ¢ ~ U(0.47,0.87)), restricted (6 ~ U (0.8x,2m),
¢ ~ U(0.21,0.87)), and full (6 ~ U(0,2x), ¢ ~ U(0,m)). We
used 3D object from Objaverse 1.0 dataset (Deitke et al.,
2022), selecting 1544 instances across 32 diverse categories.
Objects were imported into Unity (Unity Technologies, 2023)
and rendered in four virtual scenes, with each object rendered
equally across scenes. Cameras were placed 1 unit from the
object, offset slightly (0—0.1 units) from the center, and 30 im-
ages were rendered per object per scene at 256x256 reso-
lution. Each training dataset contained 185K images. In this
study, in-distribution (ID) and out-of-distribution (OOD) are de-
fined solely in terms of viewpoint distribution. Therefore, we
generated ID test sets (61K each) using the same pipeline.
An additional 61K-image test set sampled from unseen view-
points served as an OOD set for all but the full-view model,
which by design has no true OOD counterpart. We trained
four ResNet18 instances (He, Zhang, Ren, & Sun, 2015) from
scratch, each on one of the four viewpoint diversity datasets
for 30 epochs. To test the robustness to image corruption, we
applied 19 kinds of image corruption from Hendrycks and Di-
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Figure 2: a) Accuracy of ResNet18 evaluated on training set, ID validation set, OOD viewpoint dataset. b) Accuracy of ResNet18
evaluated on ID and OOD viewpoint datasets with corrupted images of increasing severity. Line and bar colors indicate the
viewpoint dataset (fixed, extra restricted, restricted, and full) used for training. Gaussian blur is shown as one exemplar of 19

kinds of image corruption.

etterich (2019) to test set images. We randomly sampled 640
pictures from each of the five test datasets balancing the ob-
ject categories and backgrounds. Finally, we evaluated each
model on the corresponding ID (corrupted) dataset and OOD
(corrupted) dataset.

Results

We observed a trade-off between rapid learning and gener-
alization (Figure 2a): as viewpoint diversity increased, train-
ing and ID accuracy declined slightly (e.g., training accuracy:
fixed 99.6% — full 96.7%; ID accuracy: fixed 99.3% — full
93.0%). However, viewpoint-restricted models failed under
OOD viewpoints (e.g., fixed: 15.6%, extra-restricted: 28.9%),
whereas viewpoint-diverse models maintained high OOD per-
formance (restricted: 62.2%, full: 90.3%).

Our image corruption experiment (Figure 2b) shows that
with mild severity (level 1) condition, fixed-view models per-
formed well on ID data (62.7%) but performed poorly on
OOD views (7.6%). In contrast, full-view models showed bet-
ter performance, achieving lower ID accuracy under corrup-
tion (37.1%) but sustaining strong OOD performance (34.4%).
These differences between viewpoint-diverse and viewpoint-
restricted models persisted under more severe image corrup-
tion as well.

Discussion

Our data reveals how viewpoint diversity influences CNN ob-
ject recognition performance. Viewpoint-restricted models
memorized specific features fast, while learning speed of
viewpoint-diverse models was more gradually, however lead-
ing to better generalization performance. Image corruption ex-
periments shows the viewpoint-diverse models staying robust
to corruptions on OOD images. These findings point toward a
pathway for improving human-CNN alignment in object recog-
nition. By emulating the way humans interact with real-world
objects, CNNs can be trained to perform in a more robust and
generalizable manner. This improved generalizability and ro-
bustness makes them better suited for real-world tasks, where
variability in viewpoint is common.
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