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Abstract

In natural settings, animals navigate richly-structured
sensory surroundings and rapidly adapt to changes in
these surroundings. While many studies have explored
navigation in mazes and open arenas, relatively little is
known about how animals navigate in terrain that lacks
defined routes and is too complex to memorize. Here, we
probe the structure of mouse behavior in a complex, re-
configurable 3D arena in darkness and without explicit re-
inforcement. Within the first several hours, mice quickly
explore the whole arena and converge on a sparse set of
running and jumping paths. Surprisingly, after this ini-
tial phase of exploration, mice continue to generate new
long paths for several days. To capture this structure, we
develop a hierarchical segmentation algorithm that com-
presses raw behavioral trajectories into a compact set of
composable sub-paths, or “motifs”. We find that the be-
havior is highly compressible, indicating that mice cre-
ate long paths by combining reusable motifs, rather than
through random exploration. To study the evolving dy-
namics of these behavioral compositions, we first show
that mice combine motifs in a non-random manner, gener-
ating temporal structure that is not captured by a Markov-
chain that preserves the average transition probabilities
between motifs. Next, we examine different phases of be-
havior in generating novel compositions. We find diverse
dynamics that involve the rapid creation and extinction of
compositions, as well as slower and more subtle refine-
ments such as morphing, short-cutting, streamlining, and
reinforcing a composition. These results suggest that
mice use diverse learning rules to configure compact be-
havioral trajectories through space.
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Experimental setup and preliminary observation. We
filmed mice in an arena of 1.8 m diameter made from 153
hexagonal tiles (Fig 1a) (Newman et al., 2023). Tile heights
varied in steps of 2.5 cm to produce a variety of local shapes,
from small steps to tall towers that could not be easily jumped.
The arena was illuminated with infrared LEDs and otherwise
dark, limiting sensory information to tactile and auditory cues
about the local arena shape and olfactory cues left by the
mice. Mice explored the arena in their dark period over four 8-
hour sessions on consecutive days, and were housed in their
home cage in between. We used an overhead camera and
SLEAP (Pereira et al., 2022) to track the mice at ~ 25 Hz.
Upon initial placement, mice quickly explore the majority
of the arena with a distinctive backtracking behavior—a slow

and short forward path followed by an immediate fast back-
ward path. After this initial exploration phase (1-2 hours), mice
quickly develop preferences for specific paths that are used in
different combinations to generate new sequences that con-
tinue to emerge over time (Fig 1b).

A tree segmentation compresses behavior into compos-
able motifs. To study the temporal evolution of this behavior,
we devise a tree segmentation that compresses raw trajecto-
ries into series of motif events (Fig 2a). The algorithm extracts
composable motifs that are 1) repetitive (which defines a “leaf”
occupancy) and 2) part of repetitive compositions (which de-
fines a “parent” occupancy). The algorithm fits a tree to the
branching structure of long paths by maximizing composition-
ality = leaf occupancy + parent occupancy (Fig. 2b).

Mouse behavior is highly compositional. To see how
much compositional information is extracted from mouse be-
havior, we compare the tree segmentation to a random seg-
mentation that preserves the distribution of motif lengths. We
find that the tree segmentation achieves a 5x compression
relative to a random segmentation, which indicates that 1)
mouse behavior is highly compositional and therefore com-
pressible, and 2) the tree segmentation is effective in extract-
ing this information. We find that 75% of the behavior can
be captured by a compact set of 233 motifs; 2381 motifs are
required to cover the remaining 25% of behavior (Fig. 2c).

Mice exhibit non-random structure in their compositions.
To understand whether mice simply compose motifs at ran-
dom, we compare mouse behavior to a memoryless Markov
chain (MC) that preserves the average transition probabilities
between motifs (Fig. 3). We find that 1) mice acquire new
motifs at a much slower rate, 2) mice sample the same motifs
more frequently within a short interval, and consequently 3)
exhibit longer pauses between executions of the same motif.

Exploring diverse compositional learning rules. To study
such a non-randomness, we explore how novel compositions
are created during different phases of behavior. We find that
groups of similar compositions emerge in ways that are sug-
gestive of diverse learning rules, including one-shot learn-
ing, reinforcement learning, latent learning, streamlining, and
global reconfiguration (Fig. 4). The learning dynamics of-
ten deviate strongly from MCs (Fig. 4a, blue vs gray) when
a handful of key motifs are either discovered or perturbed;
this is not exhibited in a MC that simply samples those same
motifs more frequently (Fig. 4a,c-d). After a local perturba-
tion, mice rapidly augment their repertoire with 48% of the
observed novel compositions (Fig. 4a), suggesting that mice
exhibit latent learning (Fig. 4c,d) that arises from perturbing
both local motifs and nonlocal compositions.
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Figure 1: Behavior evolves over time during exploration. a) Exerimental setup. b) During exploration (yellow), mice explore new paths and backtrack along
previously run paths. This exploration leads to a rapid convergence of the occupancy map, but novel paths continue to emerge over the course of multiple days.
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Figure 2: We compress mouse behavior into composable motifs. a) A tree segmentation
algorithm extracts motifs by searching for 1) repetitive paths and 2) repetitive compositions—we
find motifs that maximize both. b) Example segmentations. c) The tree segmentation achieves a
~5x higher compression rate compared to a random segmentation that preserves the distribution
of motif lengths. Lower: tightly clustered boundaries show how a small subset of extracted motifs
capture most behavior; the remaining majority of motifs cover a small fraction of the behavior.

« soft motif onset
(25% completion)

a [spikes:

« soft onset for
motif events

non-physical shuffle

Mouse behavior:

Y
{1/

motif id (sorted by soft onset)

b Markov chain (MQ):

physically allowed shuffle ~ ** /
. zw
N g w0
P(C) P() ©
P(B) P(E) of
PUJ) dayl day2 days daya

event time
(warpped for higher speed results more events)

O

P(K)

Figure 3: Mice do more than randomly compose. a)
Upper: mouse behavior as a trajectory of motif events
(spikes). Lower: Same plot without spikes. b) A Markov
chain shows much closer statistics to a nonphysical
random shuffle than to mice, as marked by its narrower
spread of motif onsets, fewer bursts of motifs, and fewer
long pauses. A burst or long pause event is defined as a
1/1000 outlier from a Poisson process (random shuffle).
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Figure 4: Rich compositional dynamics suggest diverse learning rules . a) A novelty
trace is computed to measure the emergence of novel compositions. Different learning
phases are heuristically defined (right panel). Phase 2 and 4, which show high creation
rates, are discussed in detail in the lower panel. The results imply one-shot-like (orange
sticker) learning dynamics after the acquisition of a key composition or in response to a
perturbation on day 4. Note that such a global response to a local perturbation implies
that it is mostly compositions--rather than local motifs--that are perturbed. b) Certain
streamlined compositions display very different, reinforcement-learning-like (RL-like),
dynamics. c-d) Mice also show latent learning in which a novel motif or composition
suddenly appears in response to the perturbation, despite the fact that the motif or
composition was previously available before the perturbation.
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