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Abstract 
Hippocampal-prefrontal systems organize knowledge 
in a map-like way across multiple domains, from 
physical space to abstract concepts. It is well known 
that knowledge about emotional events is organized 
in a low-dimensional space, raising the question of 
whether the brain uses cognitive maps to represent 
emotion concepts. Using functional magnetic 
resonance imaging while participants viewed 
emotionally evocative film clips, we decoded patterns 
of neural activity in hippocampal-prefrontal systems 
to predict representations of emotion concepts in a 
computational model of relational memory inspired 
by the hippocampal formation. Our findings 
demonstrate that hippocampal-prefrontal systems 
contain map-like representations of emotion 
concepts at multiple levels of granularity. These 
findings provide new insight into how the brain 
organizes knowledge about emotional events to react 
adaptively in a complex environment. 
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Introduction 
The brain builds mental models of relations between 
entities in a map-like way to support flexible behavior. A 
growing body of research suggests that the hippocampal-
prefrontal system encodes cognitive maps not only for 
physical spaces but also for conceptual spaces (Behrens 
et al., 2018). Prior studies have primarily studied cognitive 
maps using artificially constructed concepts in controlled 
laboratory experiments in which abstract relationships are 
explicitly taught and reinforced (Constantinescu et al., 
2016). Despite evidence supporting the flexible use of 
cognitive maps to guide behavior, it remains unknown 
whether similar mechanisms are employed to organize 
conceptual knowledge that naturally develops from our 
rich and dynamic experiences in daily life, such as 
knowledge about emotional episodes. 

Decades of behavioral research have demonstrated 
that when humans communicate about emotional 
experiences and recognize emotional expressions, they 
do so using an affective space organized by dimensions 
of valence and arousal (Remmington et al., 2000). Given 

this evidence, we hypothesize that emotion concepts are 
mapped within hippocampal-prefrontal systems using 
mechanisms similar to those used for mapping physical 
and other conceptual spaces (Constantinescu et al., 
2016; Park et al., 2021). This account predicts that 
individual emotion concepts are encoded in the activity of 
distinct hippocampal populations, and that a relational 
network linking emotions to one another is represented in 
population activity in the entorhinal cortex and 
ventromedial prefrontal cortex (vmPFC). Investigating 
whether cognitive mapping mechanisms extend to 
knowledge about emotions provides insight into how the 
brain models complex, naturally occurring experiences. 

Methods & Results 

We tested whether emotion concepts could be 
represented using cognitive maps by analyzing 
behavioral and fMRI measures from the Emo-FilM dataset 
(Morgenroth et al., 2025). In this study, participants (N = 
29) watched a series of cinematic videos that robustly 
engaged multiple emotion concepts. An independent 
group of subjects provided self-report ratings that reflect 
normative emotional experience. To explicitly model 
hippocampal-prefrontal systems, we used the Tolman-
Eichenbaum Machine (TEM; Whittington et al., 2020) to 
simulate interconnected neural populations that learn to 
represent emotion concepts (p cells) and structural 
relations among them (g cells) in order to predict 
upcoming sensory experiences. 

 
Figure 1. Learning emotion concepts with TEM. a) 
Multidimensional scaling on self-reported ratings of 
emotion categories across all film stimuli. b) The 11-by-11 
discrete environment derived from emotion self-report. c) 
Rate maps of example p and g cells obtained by 
averaging the activity of each cell at each node after 
training. Brighter colors indicate greater activity. 
 

To simulate learning, we created an environment based 
on the normative film ratings, such that agents exploring 



the environment experienced emotion transitions that 
approximate human ratings. We used multidimensional 
scaling to map emotion categories into a two-dimensional 
space, which was discretized into a square environment 
(Fig. 1). TEM agents repeatedly explored this 
environment, learning to map locations of emotion 
concepts in the two-dimensional space. To model human 
brain activity as participants watched emotional videos, 
we averaged the activations of p and g cells weighted by 
the emotion ratings at each time point of the film stimuli, 
approximating trajectories in the conceptual space that 
took place during film viewing. 

Because TEM includes artificial neurons at multiple 
levels of abstraction, it can represent both fine and 
coarse-grained aspects of experience (e.g., whether an 
event might be described as ‘horrifying’, ‘scary’, or more 
generally ‘bad’). Following Whittington et al. (2020), we 
specified five levels of abstraction. Because 
representations in p and g differ the most at fine-grained 
levels/small scales (see Fig. 1c), we predicted that 
hippocampal decoding of p would be more accurate than 
g for units with narrow firing fields, as they better capture 
specific emotions rather than large distances in the 
emotion space.  

We specified two fMRI decoding models using partial 
least squares regression to predict activity of p and g from 
patterns of hippocampal BOLD response (using within 
subject modeling and leave-one-film-out cross-
validation). Model performance was quantified as the 
Fisher-transformed correlation between time series of the 
decoded and actual activity in TEM. We found that 
information about emotion concepts (i.e., the average 
response of cells in p) could be decoded from the 
hippocampus (z = 0.0543, 95% bootstrap CI [0.0463, 
0.0623]), and that p could be decoded more accurately 
than g (Δz = 0.0017, 95% bootstrap CI [0.0001, 0.0034], 
p = .0145). Comparisons across representational scales 
revealed that fine-grained information was read out more 
accurately for p than g (Δz = 0.0352, 95% bootstrap CI 
[0.0254, 0.0448], p < .0001; Fig. 2, left), suggesting that 
the hippocampus exhibits sparse concept representations 
more than relational representations at small scales. 

Given better decoding of small-scale p activity in the 
hippocampus, we next grouped TEM activity of emotion 
concepts by representational scale and examined 
whether the granularity of representations varied across 
the long axis of the hippocampus. Examining differences 
between small (0-1) and large (2-4) scale representations 
of space, we found that more information about small-

scale p cell activity was present in posterior compared to 
anterior hippocampus (Δz = 0.0052, 95% bootstrap CI 
[0.0033, 0.0071], p = .0019). 

 Next, because the entorhinal cortex and vmPFC are 
thought to represent conceptual spaces in a relational 
manner as opposed to locations in the relational graph, 
we tested whether more information about g was present 
these two regions compared to the hippocampus. An 
analysis of variance testing this hypothesis revealed that 
decoding performance varied as a function of brain 
region, TEM component (g and p), and representational 
scale (i.e., a three-way interaction; F(8, 616) = 12.44, p < 
.0001; Fig. 2). 

 
Figure 2. Performance of decoding models trained to 
predict TEM p and g activity from BOLD activity in 
hippocampus, entorhinal cortex, and vmPFC.  
 

Post hoc tests revealed decoding g was more accurate 
than p at larger scales in the vmPFC (Δz = 0.0712, 95% 
bootstrap CI [0.0614, 0.0809], p < .0001; Fig. 2, right), and 
to a lesser degree in the entorhinal cortex (Δz = 0.0099, 
95% bootstrap CI [0.0001, 0.0199], p = .0461). Decoding 
g was more accurate at larger scales in the vmPFC than 
in the hippocampus (Δz = 0.0542, 95% bootstrap CI 
[0.0447, 0.0640], p < .0001) and entorhinal cortex (Δz = 
0.0604, 95% bootstrap CI [0.0506, 0.0700], p < .0001).  

We additionally observed better decoding of p at small 
scales in the hippocampus compared to both entorhinal 
cortex (Δz = 0.0191, 95% bootstrap CI [0.0093, 0.0289], 
p = .0003) and vmPFC (Δz = 0.0182, 95% bootstrap CI 
[0.0086, 0.0279], p = .0031).  Together, these results 
suggest that the vmPFC better represents large-scale 
structural abstractions (e.g., that one portion of a video 
was more pleasant than another), whereas the 
hippocampus contributes more to small-scale, fine-
grained representations of individual concepts. 

In sum, these findings, together with evidence that 
hippocampal-prefrontal systems represent self-reported 
emotions (Ma & Kragel, 2025), suggest that emotion 
concepts are encoded in a map-like way at multiple levels 
of granularity. 
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