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Abstract
A key goal of computational neuroscience is to develop
models that faithfully mimic human brain processing, in-
cluding the efficiencies behind it. Visual illusions provide
crucial test cases for this, as they are often the conse-
quence of such efficiencies under biological constraints
(e.g. efficient coding or optimal inference). Here we uti-
lize illusions to investigate whether computer vision mod-
els process video inputs similarly to humans. Focusing
on the double-drift illusion, we compare the representa-
tional geometry of these video models with behavioral
and fMRI data from human subjects viewing the same
stimuli. Representational similarity analyses reveal that
while these models lack behavioral similarity to human
observers, they do mimic the representational structure
of some brain areas early in the visual processing hierar-
chy. Our findings demonstrate that, unlike humans, cur-
rent vision models represent the physical stimulus at all
points and do not combine motion and position informa-
tion in a human-like manner. We thus find fundamental
differences between human vision and DNNs in how tem-
poral visual information is processed at later stages.
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Introduction
An accurate model of the visual system should represent stim-
uli in ways that parallel human visual processing, including
reproducing the same systematic perceptual errors. Visual
illusions provide an ideal test bed for evaluating visual mod-
els, as they can reveal the processing efficiencies employed
by the brain (Eagleman, 2001). Furthermore, illusions allow
researchers to dissociate physical stimuli from perceptual ex-
perience, enabling investigations into which representations
(physical or perceived) are available to other cognitive pro-
cesses such as attentional tracking or eye movements (Lisi &
Cavanagh, 2015; Maechler, Cavanagh, & Tse, 2021; Maech-
ler, Heller, Lisi, Cavanagh, & Tse, 2021).

This dissociation is particularly valuable because it permits
matching stimuli in either their veridical, physical properties or
their perceived properties, while creating differences in the al-
ternative representational format. In early processing stages
of the human visual system, the veridical stimulus is repre-
sented as it appears on the retina, while the illusory percept
emerges in later stages (S. Liu, Yu, Peter, & Cavanagh, 2019;
Li, Zeng, Shao, & Yu, 2023). If deep neural networks (DNNs)
process visual information similarly to humans, we would ex-
pect them to represent stimuli according to their physical char-
acteristics in early layers and according to their perceptual
characteristics in later layers.

Previous research has established that certain convolu-
tional neural network (CNN) architectures share encoding ef-
ficiencies with the human brain (Benjamin, Qiu, Zhang, Ko-
rding, & Stocker, 2019), and that these efficiencies can give
rise to illusions such as the tilt illusion (Zhang, Mao, Aguirre,
& Stocker, 2024). However, these findings are predominantly
based on models processing static image inputs, whereas the
human visual system must operate in a dynamic, continuously
changing environment.

In this study, we examine video-processing DNNs to deter-
mine whether they ”experience” illusions. By comparing the
representational structure of these models with human behav-
ioral and fMRI data collected during stimulus presentation, we
can assess whether current video DNNs capture fundamental
aspects of human temporal visual processing.

Results
The representational geometry of DNN layer activity was more
aligned with physical and not with perceptual stimulus repre-
sentations for all DNNs we tested. The illusory video inputs
were not represented like the perceptually matched (physically
different) control stimuli. Generally, there was a moderate to
high correlation between DNN layers and brain areas V1, V2,
V3, V4 and MT, but not MST (Fig 1 C).

One crucial aspect of the double-drift illusion is its de-
pendence on spatial uncertainty, as the illusion works only
in the visual periphery (Kwon, Tadin, & Knill, 2015). Cur-
rent DNNs incorporate neither the fovea-periphery trade-off
present in human visual systems, nor do they combine po-
sition and motion information optimally when inferring trajec-
tories of objects. Incorporating a simulated foveating step,
following Freeman and Simoncelli (2011), where each video
frame is blurred according to the distance from a simulated
fixation cross 8 degrees of visual angle away from the illusion
did not change the results.

Discussion
Our findings reveal a fundamental difference in how humans
and current video DNNs process dynamic visual information.
DNNs’ layerwise representations aligned with the physical
rather than the perceived stimulus format. While these mod-
els shared representational similarities with early visual areas
(V1-V4, MT), they failed to exhibit the perceptual integration
that causes motion illusions in human observers.

Illusions perceived by the human visual system are often
the consequence of neural efficiencies (Benjamin et al., 2019;
Zhang et al., 2024) or of optimal inference using noisy in-
puts (Kwon et al., 2015). Accurate models of the visual sys-
tem should benefit from the same computational efficiencies
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Figure 1: Method and Results A) Schematic of the illusion. External motion (translation of Gaussian envelope) and internal
motion (Gabor phase drift) are mis-combined by the visual system to form an illusory perceived motion trajectory. B) Hypothetical
RDMs for perceived and physical motion. Stimuli are either physically or perceptually matched. C) layerwise RSA results for
behavioral and brain based RDMs from an example DNN (SwinTransformer ). Brain data and stimuli are from Li et al. (2023).

present in biological vision, which would lead to similar sys-
tematic perceptual ”errors.” Current video models fail to repro-
duce these illusory percepts, suggesting they lack key compu-
tational principles that characterize human visual perception
— particularly the integration of position and motion informa-
tion under uncertainty.

Methods

Stimuli

The double-drift illusion arises when a Gabor patch has two
conflicting motion signals: its envelope translating across the
screen and its texture moving at a 90° angle internally (exter-
nal and internal motion respectively). When viewed periph-
erally, observers perceive a trajectory that strongly deviates
from the external motion path. They instead see the Gabor
moving in a direction that is a weighted average of internal
and external motion (Heller, Patel, Faustin, Cavanagh, & Tse,
2021). Computational modeling suggests this illusion results
from optimal inference based on noisy motion and position es-
timates (Kwon et al., 2015). Here we used stimuli that closely
matched those in experiment 1 from Li et al. (2023).

More motion illusions, such as the Flash-Lag illusion

(Nijhawan, 1994) and motion-induced position shifts (De Val-
ois & De Valois, 1991), will be included on the poster.

Video DNNs

In figure 1 we showcase a video SwinTransformer (Z. Liu et
al., 2022, 2021) that does self-attention in multiple local win-
dows as opposed to globally. The model uses the swin tiny ar-
chitecture and is trained on the Kinetics400 dataset (Kay et al.,
2017), optimized for human action classification. The weights
are taken from torchvision’s default (TorchVision, maintainers,
& contributors, 2016). More models (classification / next frame
prediction / CNN / transformer) will be included on the poster.

Measures

We assessed the geometric nature of the representations
generated by DNNs and brains with RSA. We use RSA as
it allows us to compare how stimuli within a system are rep-
resented in relation to each other, both behaviorally and in-
ternally and see if that is consistent between models. While
we cannot claim mechanistic similarity with this analysis (as
similar representations do not require similar mechanisms),
we can claim an inconsistency as similar representations are
required for similar mechanisms.
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