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Abstract

Several arguments suggest that the brain might have a
dedicated representation of the state of injury. This would
provide an internal control system to modulate behaviour
given the changed homeostatic priorities associated with
injury, including pain, anxiety and mood changes appropriate
to the need for heightened protection and recuperation during
healing. Here, we propose a computational architecture
for how this might be constructed, treating the injury as a
partially observable Markov decision process (POMDP),
and proposing a Bayesian decision-theoretic solution that
combines inference with optimal control. We show how this
offers an explanation of two core paradoxical observations:
behaviours such as rubbing an injured area (convention-
ally viewed under the lens of gate control theory), and
high propensity of transition to pathological chronic pain
states.  Overall, this provides a quantitative framework
for mapping injury homeostasis to neural substrates, with
potential for identifying novel chronic pain targets. Full paper:
https://www.biorxiv.org/content/10.1101/2025.02.04.636410v2
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Introduction

Injuries often lead to a period of vulnerability, reduced func-
tionality, and characteristic behavioural changes considered
adaptive for safe recovery (Wall, [1979; |Williams| |2019), ac-
companied and potentially mediated by pain. [Seymour et
al.| (2023) offered a new perspective on tonic pain, noting
the brain’s inevitable uncertainties about injury and recovery.
They proposed that the brain continually integrates multisen-
sory inputs to infer an uncertain injury state, a representa-
tion tied to action choice and generating internal signals inter-
preted as pain. This framework extends Bayesian models of
pain perception (Seymour et al.,[2013;|Bichel et al.,[2014) to
include control under uncertainty, and critically suggests that
protective behaviours, by restricting access to informative sig-
nals about recovery, might lead to persistent injury beliefs and
chronic pain.

We formalize these ideas as a partially observable Markov
decision process (POMDP; [Kaelbling et al.| (1998)), provid-
ing the first concrete computational realisation of |Seymour
et al| (2023) within a reinforcement learning context. Our
work addresses several gaps: it (i) unifies Bayesian inference
and control approaches in pain research (Seymour & Mancini,
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2020), (i) mathematically formalises how information restric-
tion about injury resolution may drive chronic pain states (Sey-
mour et al.} 2023), and (iii) makes explicit how the value of in-
formation influences pain-related behaviour (Seymour, [2019).
We focus on the belief about the injury state, which under-
lies tonic pain and is informed by integrating multiple, po-
tentially unreliable, information sources over time (Debanne,
2004; Hofle et al., [2010; IMancini et al., |2022). Our simula-
tions, using a minimal POMDP model detailed in the full paper,
explore how the costs of information gathering (e.g., using an
injured part to assess recovery) can, counter-intuitively, lead
to pathological chronic pain states, even without ongoing pe-
ripheral nociception (Fitzcharles et al., 2021). We proceed by
studying the properties of its optimal policy, tying the abstract
model to observed pain phenomena.

Theory sketch
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Figure 1: (A) Schematic of the injury POMDP, with an internal
environment generating observations and conferring utilities
and an internal agent inferring a belief state (Kaelbling et al.,
1998) to choose optimal actions.
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We propose that the brain treats injury in terms of a par-
tially observable Markov Decision Problem (POMDP; Fig.
(Drake} |1962; |Astrom et al., 1965 |Sondikl, [1971}; |Kaelbling et
al., [1998). For the purpose of our simulations, we construct
a simplified injury POMDP describing a patient contemplating
a demanding activity whilst uncertain about their injury. The
true state characterizes the injury; we consider just two possi-
ble states s; € {0, 1} for healthy or injured. However, crucially,
the brain lacks full information about the state; interoception
being incomplete and noisy so the agent has a belief state
b, € 10,1], a probabilistic distribution over states (Kaelbling et
al.;[1998). We radically simplify actions to three to four: aac
(physically demanding, resource-collecting); argr (recovery);
and aque (assessing injury), sometimes including a null action
Anuyl-

Utilities are central to determining the optimal policy and
are a contentious aspect of the POMDP. In standard RL, util-
ities are externally provided, unlike in nature. This has in-
spired work on homeostatic reinforcement learning (Keramati
& Gutkin|, [2014) and intrinsic rewards (Chentanez et al., [2004;
Barto & Simsek, [2005;/Singh et al.,|2009; Dayan, 2022). Here,
as a simplification, we assume an intrinsic reinforcement func-
tion r(s,a), defining immediate affective consequences of ac-
tion a in true state s. For instance, this function might be
large and negative/positive for activity/rest actions when in-
jured; small and negative for investigating while injured; and
negative for resting while uninjured (as proxies for long-run ef-
fects, further detailed in the full paper). Since the agent only
knows its belief b; about s, the expected utility is internally con-
structed. Utilities and observation models described in more
detail in the full paper.

For concreteness, as a substantial simplification, we asso-
ciate the belief state b, with tonic pain — higher belief in be-
ing injured corresponds to greater pain. This pain becomes
chronic if the agent fails to act or gather evidence to revise
its belief. We link the expected negative reinforcement from
aque to phasic pain caused by injury investigation during the
episode. This expectation averages over the belief state, pro-
viding a mechanism for precisely tuning the feedback (Sey-
mour, [2019) in case of correct inferences, but is also suscep-
tible to incorrect or underinformed inferences.

Normative consequences

Why do we investigate injury despite it being painful?
Our model provides a normative explanation for investigat-
ing an injury despite it being painful, a behaviour difficult
to explain through simple inferential or control-theoretic ap-
proaches alone. In this instance, aque When injured incurs a
cost (e.g., (s = 1,aque) = —4) but provides more accurate in-
formation about the internal state than other actions. For this
demonstration, we omit an for simplicity, though its inclusion
does not alter the core finding (details in full paper).

When starting from an uncertain belief state (by = 0.5), the
agent chooses aque at the cost of some phasic pain due to the
value of information (Fig.[2). With each sample, the agent up-
dates its belief until committing to aa; or argr (Fig. |2} red and

blue arrows). If not injured (s = 0), beliefs update (red arrows)
leading to agcy; if injured (s = 1), beliefs update (blue arrows)
leading to ag,. This demonstrates agents choosing costly in-
vestigative actions to accrue evidence for optimal decisions.
Such actions extend beyond "rubbing the injured area” to in-
clude non-contact explorations like moving a painful joint.
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Figure 2: Action values after value iteration. Red arrows show
belief updates under true state s = 0 (not injured), whereas
blue arrows show belief updates under true state s = 1 (in-
jured). The agent takes multiple aque actions, reaching belief
thresholds where choosing asct Or argr is more valuable than
dque, thus terminating the episode.

For further results on the trade-off between phasic pain and
information gain, and results on dysfunctional consequences
due to information-restriction and aberrant priors, please refer
to the full paper.

Discussion

We present a theoretical framework for understanding the
computational logic of a dedicated homeostatic state for in-
jury (Seymour et al.| 2023), where internal states are partially
observable and require inference. This perspective norma-
tively explains behaviours such as probing an injury despite
immediate phasic pain to acquire information, and identifies
fault lines” (e.g., information restriction, aberrant priors de-
tailed in the full paper) that can lead to suboptimal behaviour
and chronic pain. Our framework complements the Fear-
Avoidance model (Vlaeyen & Linton, [2000; |Viaeyen et al.,
2016); by formalising information restriction dynamics, it pro-
vides a computational, inference-based account of how avoid-
ance can sustain maladaptive beliefs about injury resolution.
This approach, potentially relevant to understanding clinical
conditions like sciatica and phenomena such as boom-bust
cycles (further discussed in the full paper), offers a mathemat-
ical foundation for making theories of this complex condition
explicit, which is of translational importance.
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