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Abstract
Understanding representations is a major aim in cog-
nitive computational neuroscience, yet existing data-
driven methods are limited in providing interpretable di-
mensions that also capture the underlying data struc-
ture. Here we propose Similarity-based Representation
Factorization (SRF), a method that reliably decomposes
data structures into interpretable, non-negative compo-
nents based on similarity matrices. Through simulations
and empirical data, we demonstrate that SRF is robust
to noise and capable of revealing interpretable dimen-
sions in both synthetic and behavioral similarity data.
SRF opens new possibilities for uncovering the dimen-
sions that underlie similarity even in smaller and nois-
ier datasets, thus offering a principled approach for in-
terpreting representational structure.
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Introduction
Understanding the nature of representations in minds, brains,
and machines is a central question in cognitive computational
neuroscience. To address this, both theory-driven and data-
driven approaches have been developed to reveal, evaluate
and compare representations. Prominent theory-driven ap-
proaches include encoding and decoding methods (Naselaris,
Kay, Nishimoto, & Gallant, 2011) and representational similar-
ity analysis (RSA; Kriegeskorte, Mur, and Bandettini, (2008)),
while data-driven approaches include principal component
analysis (PCA), multi-dimensional scaling (MDS) or t-SNE
(Van der Maaten & Hinton, 2008).

Among these, RSA has become widely used due to its abil-
ity to operate directly on the representational level, abstract-
ing away from specific implementations and enabling compar-
isons across different systems. RSA quantifies the degree of
similarity between representational geometries, providing in-
sights into how similar different models or brain regions are
in their encoding of information. However, RSA typically lacks
interpretability and researchers have often resorted to visual-
ization techniques like MDS or t-SNE to identify interpretable
axes of variation on top of representational geometries, but

these techniques can be hard to interpret beyond three dimen-
sions (t-SNE) or are not optimized for interpretability (MDS).

Providing a multi-dimensional interpretable explanation
about the underlying factors driving representational similarity
is desirable, since it would al to move beyond merely compar-
ing models and hypothesis testing (as classically done with
RSA) to a more fine-grained description that not only reveals
how much two representations are similar to each other, but
also why they are similar.

A canonical approach for having interpretable explanations
derived from data is non-negative matrix factorization (NMF).
NMF creates part-based and additive representations by de-
composing data into non-negative components, making it par-
ticularly well-suited for interpretability. In this paper we intro-
duce a new toolkit for the cognitive sciences that marries the
benefits of representational geometries with the interpretabil-
ity gained NMF. To this end, we introduce a framework we term
Similarity-based Representation Factorization (SRF) that ap-
plies NMF to similarity matrices to yield interpretable latent
representational geometries. Unlike RSA, SRF does not re-
quire a separate statistical framework and is embedded within
classical inferential statistics, making it more accessible and
flexible for a wide range of applications. This framework allows
for the identification of interpretable, part-based representa-
tions from any symmetric similarity matrix, including those de-
rived from behavioral responses or kernel-based methods. By
providing a more interpretable way to analyze representations,
SRF has the potential to advance our understanding of cog-
nitive neuroscience, psychology, and artificial intelligence.

Methods
SRF applies Symmetric Non-negative Matrix Factorization
(SymNMF; (Kuang, Ding, & Park, 2012)) to decompose sim-
ilarity matrices into interpretable latent components. Given a
symmetric similarity matrix S ∈ Rn×n, SRF finds a low-rank
factorization S ≈WHT , where W,H ∈ Rn×k are non-negative
matrices and k ≪ n. Following (Zhu, Li, Liu, & Li, 2018), we
relax the strict symmetry constraint by allowing W and H to
differ slightly, which improves optimization stability and flexi-
bility. A regularization term encourages, but does not enforce,
W ≈ H, accounting for minor asymmetries that arise during
optimization. The objective function becomes:



b

a

Figure 1: Simulation experiments. a. Ground-truth latent
structure: each object is assigned to a unique cluster with
minimal overlap. The resulting cosine similarity matrix re-
veals clear block structure reflecting the underlying clusters.
b. SymNMF recovers the ground-truth similarity better com-
pared to NMF.

min
W,H≥0

∥S−WHT∥2
F +α∥W −H∥2

F , (1)

where the first term ensures a low-rank approximation, and
the second penalizes deviation from symmetry, weighted by α.
Since Eq.1 is highly non-convex, we solve it iteratively using a
two-block coordinate descent algorithm (Kim & Park, 2008).

Simulated Data Generation
We evaluated the clustering performance of SRF using syn-
thetically generated data with known latent structure and con-
trolled noise levels. Each dataset consisted of n samples
and p features structured by k latent components. Sample-
specific cluster memberships were drawn from a Dirichlet dis-
tribution, producing a non-negative matrix M ∈Rn×k. A latent
feature matrix X ∈ Rk×p was sampled from a Gaussian dis-
tribution. These were combined to form the clean data matrix
D = MX. We then simulated measured data by adding Gaus-
sian noise scaled to the signal variance. Specifically, we com-
puted the standard deviation of the clean signal D, denoted
as σ = std(D), and generated noise ηηη ∼ N (0,σ2). The final
data matrix D′ was obtained via square-root mixing based on
a predefined signal-to-noise ratio (SNR) parameter:

D′ =
√

SNR ·D+
√

1−SNR ·ηηη,

where SNR is a scalar in the range [0,1]. This procedure
ensures that noise magnitude is matched to the variance of
the underlying signal, while allowing us to systematically vary
the contribution of noise across simulations. We then com-
puted pairwise cosine similarities between the rows of D′ to
obtain a similarity matrix S ∈ Rn×n, with:

r = 0.91True Predictedb
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Figure 2: SRF on Behavioral Similarity a. SRF reveals inter-
pretable components. Each row is a unique component and
the top 6 images with highest numeric value are visualized. b.
RSMs for predicted and true similarity.

Si j =
d′

i ·d′
j

∥d′
i∥∥d′

j∥
,

and rescaled all entries of S to the range [0,1] via min-max
normalization to ensure non-negativity.

Behavioral Similarity Matrix

We applied SRF to behavioral similarity matrices obtained
from human participants performing a multi-arrangement task
(Peterson, Abbott, & Griffiths, 2018). Participants arranged
objects according to their perceived similarity, and pairwise
object similarities were calculated from the aggregated partic-
ipant arrangements, resulting in a symmetric behavioral simi-
larity matrix.

Results and Conclusion
We first evaluated SRF on the synthetic data, testing its abil-
ity to recover known clustering structure. Clustering is closely
linked to interpretability, as it groups data into discrete, often
semantically meaningful categories, that can provide insight
into the latent dimensions that organize the data. Each data
point (row) had multiple cluster assignments with one dom-
inant category (Figure 1a). The resulting cosine similarity
matrix shows a distinct block pattern corresponding to the
ground-truth cluster assignments. To quantify the effective-
ness of SRF, we compared its cluster recovery performance
to a conventional NMF approach applied directly to the noisy
feature matrix. We systematically varied the noise level and
measured how well each method recovered the original clus-
ters. For this, we set the low-rank factorization to the same
dimensionality as our original data rank (k = 5) and then eval-



uated the accuracy of predicting the dominant cluster cate-
gory. As shown in Figure 1b, SRF was substantially more
robust, maintaining better accuracy even at high noise levels.

Next, we applied SRF to empirical similarity data collected
from human participants using a fixed rank of k = 4. As shown
in Figure 2a, SRF uncovered interpretable latent dimensions
that align with intuitive categorical and conceptual grouping
of objects. Additionally, the low-dimensional embedding cap-
tured much of the ground-truth similarity (Figure 2b).

Together, our approach proposes a novel framework for the
cognitive sciences to derive interpretable representations from
similarity matrices, with broad applications for research in cog-
nitive and computational neuroscience.
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