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Abstract 
This study tests whether standard convolutional 

neural networks (CNNs) replicate the human 

prototype effect in category learning. Using a 

setup based on Experiment III of Posner & Keele 

(1968), three CNN architectures were trained on 

abstract dot patterns. While none matched the 

human results, AlexNet and DenseNet-121 

showed better accuracy for unseen prototypes 

than for new exemplars, suggesting a weak 

prototype bias. These results provide a 

foundation for further research on category 

learning in humans and CNNs. 
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Introduction 

Humans organise their experiences into categories – 

groups of similar objects, ideas and events that are 

treated as functionally equivalent (Minda et al., 2024). 

 But how do we classify unfamiliar instances? For 

example, how do we recognise a new animal as a dog or 

a cat without prior exposure to that specific animal? 

Cognitive science offers two hypotheses: 

1. Prototype Theories assume that a category is 

represented by a single mental abstraction – a 

prototype (Posner & Keele, 1968). Novel 

instances are classified according to their 

similarity only to the central prototype. 

2. Exemplar Theories assume that people learn 

categories by storing memory traces for all items 

in a stimulus set and comparing new samples 

with these stored examples (Medin & Schaffer, 

1978). 

Early research showed that humans can often easily 

abstract and recognise prototypes even when they 

haven’t encountered them before – a phenomenon known 

as the Prototype Effect (Posner & Keele, 1968). Well-

documented across various domains (see Cabeza et al., 

1999 for an example), this effect supports the view that 

human behaviour can, at least in part, be explained by 

prototype theories. 

 This raises a key question: Do artificial vision 

models like CNNs behave similarly under the same 

experimental conditions? While a recent study explored 

this question (Singh et al., 2021), direct comparisons 

remain challenging due to key differences in the training 

and evaluation procedures used for humans and CNNs. 

 The current investigation aims to address this by 

closely replicating a pioneering study on the prototype 

effect in humans (Posner & Keele, 1968), using  standard 

CNNs. 

Experimental Setup 

The dataset and training procedure closely match the 

third experiment of Posner & Keele (1968), excluding day 

2 evaluation due to its limited impact on the results.  

 In short, the dataset consisted of six classes of 

abstract dot patterns (9 dots), each anchored by a central 

prototype (Figure 1). Within each class, stimuli included: 

one prototype, four training exemplars generated by 

applying 7.7-bit perturbations to the prototype, two testing 

exemplars with different 7.7-bit perturbations, and two 

testing exemplars with milder 5-bit perturbations. Across 

all classes, the perturbations for the exemplars were the 

same, as was the case in the original study (Posner & 

Keele, 1968). 

 

Figure 1. Two example prototypes and exemplars from 

the same classes (1 & 6). 

  

We used three popular CNN architectures – 

AlexNet (Krizhevsky et al., 2012), DenseNet-121 (Huang 

et al., 2017), and ResNet-18 (He et al., 2016) – as 

learning agents. Models learned to classify 7.7-bit 

exemplars (4 per class) of three different classes (20 

class combinations in total) until achieving two 

consecutive epochs where all images were correctly 

classified. The average number of errors to criterion was 

37.5 for Humans (Posner & Keele, 1968), 34.72 for 

AlexNet, 9.59 for DenseNet-121, and 6.52 for ResNet-18. 

During each epoch, the mini batch size was 1, 

optimisation was performed using the Adam Optimiser 

(Kingma & Ba, 2014) with a learning rate of 0.0001, and 
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Cross-Entropy Loss was used as the loss function. 

Models were initialised with ImageNet1K-pretrained 

weights to mimic prior knowledge in humans, and fine-

tuned by replacing the final fully connected layer to match 

the number of classes. 

 After training, performance was assessed by 

evaluating the models on four different conditions: already 

seen 7.7-bit exemplars (2 per class), the prototypes (1 per 

class), new 5-bit exemplars (2 per class), and new 7.7-bit 

exemplars (2 per class). In total, we obtained 20 

performance scores – one for each combination of three 

classes – per CNN architecture per condition.  

Results 

Figure 2 presents the evaluation accuracies of all 

learning agents – including the human results from 

Posner and Keele (1968) – across conditions, 

revealing similar trends. 

Figure 2. Bar plots show the average accuracies 

(with standard errors) on test examples after training 

for all learning agents. Every dot represents a 

different combination of 3 classes. The original 

publication provided only one human value (mean). 

 

As in the original study, we used two-sided 

sign tests to compare conditions and assess whether 

CNNs replicate human behaviour. After confirming 

the necessary assumptions (independent and 

ordered differences), the results varied across 

models (Table 1). For AlexNet, performance differed 

significantly across all conditions. In contrast, 

DenseNet-121 showed no significant difference 

between new 5-bit and new 7.7-bit exemplars, and 

ResNet-18 showed similar performance for 

prototypes and new 5-bit exemplars. None of the 

CNNs matched the human results that showed similar 

performances for old exemplars and prototypes – the 

Prototype Effect. 

t = number of ties 

Conclusion 

Replicating human experiments with artificial models 

often involves significant deviations in setup (Jacobs 

& Bates, 2018). In the current study, we partially 

address this issue by setting up a CNN experiment 

that preserves almost all aspects of an early human 

study on category learning (Posner and Keele, 1968). 

 Unlike the human results, we found no strong 

evidence of a prototype effect in CNNs. However, in 

AlexNet and DenseNet-121, unseen prototypes were 

classified more accurately than new exemplars, 

possibly suggesting a weak prototype bias. Overall, 

these preliminary findings hint that CNN behaviour in 

this specific setup may be best explained by a 

combination of prototype and exemplar theories. 

 In conclusion, these results lay the 

groundwork for further research, including exploring 

differences in category learning across CNN 

architectures and evaluating how well CNNs replicate 

other (more recent) category learning experiments 

under human-like experimental conditions. 
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Table 1. Two-Sided Sign Test Results. 

Comparison Humans AlexNet DenseNet ResNet 

Old vs 
Prototype 

ns 
t = 12 

0.002 
t = 6 

< 0.001 
t = 0 

< 0.001 
t = 1 

Prototype vs 
New 5-bit 

0.01 
t = 2 

0.001 
t = 2 

< 0.001 
t = 3 

ns 
t = 2 

New 5-bit vs 
New 7.7-bit 

0.05 
t = 5 

0.001 
t = 1 

ns 
t = 1 

0.012 
t = 0 
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