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Abstract

Theory of Mind (ToM) enables individuals to infer others’
intentions and beliefs. While existing models success-
fully simulate recursive ToM reasoning, they typically rely
on a fixed strategy at the lowest level (e.g., Win-Stay-
Lose-Shift). We introduce a novel ToM model that com-
bines a dynamic belief over multiple strategies with re-
cursive best responses at higher levels. Using simulated
data from a Matching Pennies game, we show that the
model accurately recovers underlying strategies, adapts
to changes in the environment, and correctly infers the
ToM level of the agent. This approach offers a more flex-
ible and robust framework for modeling strategic social
reasoning and opens new directions for understanding
decision-making in interactive settings.
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Introduction

Theory of Mind (ToM) refers to the ability to infer others’ latent
cognitive states, such as intentions, goals, or beliefs. In recur-
sive ToM, individuals model what others believe about them
(e.g., “I think you think I’ll do X”). This recursive reasoning is
organized into levels, beginning with Level-0, where the agent
acts without modeling the opponent, and assuming that oth-
ers reason at one level below.

Recursive ToM models capture both competitive (Match-
ing Pennies (Devaine et al., 2014)) and cooperative (Stag
Hunt (Yoshida et al., 2008)) human behavior in strategic
games. These models typically assume a fixed Level-0 strat-
egy such as Win-Stay Lose-Shift (WSLS). Yet behavioral
evidence suggests participants also employ strategies like
IMITAT E or Tit− f or−Tat (Axelrod, 1980).

To address this, we introduce a new ToM model that es-
timates a dynamic belief over multiple strategies at Level-0 .
This allows the model to generate more accurate predictions
by dynamically inferring the current strategy. It also recursively
builds higher ToM levels by computing best responses on the
basis of these beliefs. In the following sections, we introduce
the model and detail its structure, with particular emphasis on
strategy inference at Level-0, given its critical role in shaping
the ToM hierarchy. We then demonstrate the model’s ability
to accurately infer ToM depth. This work represents a first
step toward a more comprehensive framework for modeling
low-level strategy uses in social interactions.

Methods
To estimate opponent behavior at Level-0, the model evalu-
ates observed actions against a set of strategies S = s1, ...,sn,
such as WSLS, IMITAT E, REPEAT and OPPOSE. For
each strategy s, the model maintains a belief weight αs, up-
dated using a retention factor ζ and a learning rate η (Smith
et al., 2022):

αs← ζ×αs + ε×b(cOP|s)

where b0(cop|s) is a binary indicator over opponent ac-
tions, assigning 1 to the action that matches a strategy s,
and 0 otherwise. For instance, the IMITAT E strategy pre-
dicts that cOP(t) = cAG(t − 1), so if cAG(t − 1) = 1, then
b0(cOP(t)|s = IMITAT E) = [1,0]. This defines a determin-
istic belief over the opponent’s next choice under strategy s.
The Dirichlet distribution over strategies is thus obtained as:

p(s)∼ Dir(α)

which is used to compute the integrated Level-0 belief over
opponent choices as:

B0(cOP) = ∑
s

p(s)b0(cop|s)

When it comes to recursive ToM reasoning, the model com-
putes expected values using the utility matrix U(cAG,cOP),
which depends on the choice of the agent cAG and the choice
of the opponent cOP. Higher ToM levels are constructed as
best responses to the predicted opponent’s behavior at the
level below. A level-k agent computes the expected value of
each action by simulating an opponent at level k−1:

Vk(cAG) = pk−1(cOP)×U(cAG,cOP)

pk(cAG) = so f tmax(τVk(cAG))

Importantly, only Level-0 beliefs are updated across trials;
higher levels belief fall out of the recursive ’best-response’ rea-
soning (De Weerd et al., 2018; de Weerd et al., 2013)

Results
We validated the model using simulated data from Matching
Pennies (MP) under varying levels of volatility. Choice behav-
ior was generated using an L1-agent. The model reliably re-
covers both learning and retention parameters across a grid
of true values at two levels of volatility (Figure 2, top and mid-
dle row) (low: 20%, high: 80%). All recovered parameters
exhibit a strong Pearson correlation with the true parameters



Figure 1: Hierarchy over ToM levels. At Level 0, the agent
(AG) follows action strategies without considering the strate-
gies used by the opponent (OP). At Level 1, the agent es-
timates a probability distribution P(sOP) over opponents ac-
tions, marginalizing over the belief over strategies. At Level
2, the agent simulates the opponent’s best response, assum-
ing the opponent is reasoning about the agent’s strategies
P(sAG), and then best responds to that. All mentalizing oc-
curs from the agent’s perspective.

(p < 0.001), with the lowest correlations observed at high
volatility: r > 0.72 for learning and r > 0.98 for retention. The
model also flexibly tracks and adapts its strategy beliefs in re-
sponse to environmental changes (Figure 2, bottom row).

We also evaluated model’s ability to identify the correct
Theory of Mind (ToM) level. Specifically, we generated 1,000
behavioral sequences using either a Level-1 or a Level-2
agent. Each sequence was fit using the true parameters,
and cumulative negative log-likelihoods were computed un-
der both Level-1 and Level-2 models. The model reliably
identified the correct ToM level, with a highly significant dif-
ference between the levels (real L1: one-side paired t-test:
t > 83, p < 0.001; real L2: one-side paired t-test: t < −88,
p < 0.001).

Discussion

This work introduces several key innovations to address limi-
tations of previous ToM models: (i) mapping behavior onto in-
terpretable strategies, (ii) accumulating evidence about strate-
gies, (iii) adapting to shifts in strategy use, and (iv) comput-
ing higher-level decisions as best responses to inferred lower-
level beliefs. In addition, uncertainty over ToM depth is mod-
eled via a second Dirichlet distribution, with weights updated
according to each level’s predictive accuracy (not presented
here).

Our results show that the model reliably recovers learning
and retention parameters across varying conditions. Notably,
recovery of learning rates is limited in certain regimes, which
could be due to their secondary influence on action probabili-
ties: learning primarily shapes the Dirichlet beliefs over strate-
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Figure 2: Model validation using simulated data from a volatile
Matching Pennies (MP) environment. Top row: Parameter re-
covery plots for the learning rate across under low (left) and
high (right) volatility conditions. Middle row: Parameter recov-
ery plots for the retention rate. Each line represents a differ-
ent fixed value of the complementary parameter; error bars
indicate the standard error of the mean (SEM) across simu-
lations. Bottom row: Trial-wise belief dynamics showing the
model’s inferred probabilities for each Level-0 strategy. Back-
ground color indicates the true strategy used by the simulated
opponent. Note: In MP, WSLS and OPPOSE are behaviorally
indistinguishable.

gies, while actions are generated by integrating over these
beliefs. Moreover, although belief dynamics appears noisy, it
is an expected outcome in matrix games, where behavioral
overlap between strategies is common. Crucially, the model is
designed to handle this ambiguity by integrating across multi-
ple strategies, enabling stable and accurate inference.

Future work should explore model’s generalizability to
other matrix games (e.g. Bach or Stravinsky, Prisoner’s
Dilemma, Stag Hunt) and more complex interactive settings
(e.g. Social Foraging Task).
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