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Abstract 

Concrete concepts are represented in the brain 

according to linguistic, experiential and 

taxonomic organizational principles, but it is not 

clear how much these principles contribute to the 

representation of the abstract domain. Moreover, 

compared to their spatial location in the brain, 

little is known about the temporal unfolding of 

these processes. In this study, we use 

Magnetoencephalography (MEG) and semantic 

models to investigate the localisation and 

temporal unfolding of concrete and abstract 

concepts. Concrete and abstract words were 

presented visually to the participants during MEG 

recording. Data were analysed through 

Representational Similarity Analysis (RSA), 

separately for concrete and abstract words. The 

semantic models were based on linguistic, 

experiential, and taxonomic information. We 

collected data from 6 participants, and data 

collection is ongoing. We expect significant 

correlations between the MEG signal and the 

distributional model for abstract and concrete 

concepts. This correlation is expected to 

temporally precede correlations with the 

experiential models. Concrete concepts signal is 

expected to correlate with the sensorimotor 

experiential model, while abstract concepts 

signal with the emotional one. Taxonomic models 

are expected to correlate with concrete but not 

with abstract concepts signal.  
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Introduction 

While concrete concepts have been argued to rely on 

both a linguistic and a perceptual format, abstract 

concept representation has been considered purely 

linguistic for a long time (Paivio, 1991). However, 

more recent embodied cognition accounts claim that 

abstract concepts too rely on experience, in particular 

the emotional one (Kousta et al., 2011). Concrete 

concepts have also been divided into clear-cut 

categories derived from taxonomic information. While 

the literature highlighted the existence of different 

abstract categories (Conca et al., 2021), the 

separation of these categories is fuzzy and often 

relies on experiment-specific measurements (Villani 

et al., 2019; Persichetti et al., 2024). In our study, we 

used MEG to record neural responses during words’ 

visual comprehension, and used RSA to correlate 

distributional, experiential, and taxonomic models 

separately on concrete and abstract word-to-word 

sensor and source-localized MEG responses. We 

investigated: (i) which information (i.e., which model) 

is encoded during concept comprehension, (ii) when, 

and (iii) where the information is encoded. 

 

Methods 

Experimental Design 

Stimuli consist of 80 Italian nouns (3-10 letters), taken 

from Repetto dataset (Repetto et al., 2023). Half of these 

words are abstract and half concrete (<5.5 and >7 on the 

concreteness scale, respectively). Similarities between 

these words were obtained using three kinds of models: 

a distributional model, two experiential models, and two 

taxonomic models. These similarities are stored in 

representational dissimilarity matrices (RDMs), where 

each column/row references one word, and each off-

diagonal cell contains the distance between each pair of 

words according to each model. The distributional model 

is based on Word-Embeddings Italian Semantic Space 

(Marelli, 2017), a word2vec model trained on an Italian 

text corpus, where the distance between word vectors 

reflects co-occurrence patterns of words in the text. The 

experiential models were computed based on semantic 

ratings obtained from Repetto and colleagues’ dataset on 

sensory (vision, touch, audition, smell, taste and 

interoception), motor (head, foot/leg, hand/arm, 

mouth/throat, torso) and emotional (valence, arousal, 

dominance) dimensions. The taxonomic models leverage 

WordNet. In WordNet, concepts are organized according 

to taxonomic relations, with a hypernyms and hyponyms 

hierarchical structure. We computed two models based 

on WordNet: a path model based on Wu-Palmer similarity 

and a categorical model with hypernyms as the category 

labels. Concrete categories are Animal, Person, Structure 

and Device; abstract categories are Act, Quality, 

Cognition and Feeling. Words across all categories were 

balanced in terms of: number of letters, frequency, 

number of orthographic neighbors, mean frequency of the 

orthographic neighbors. Moreover, we computed control 

RDMs based on word frequency and length to regress out 

in the RSA. Continuous MEG data was acquired during 

word visual presentation. Words were presented for 300 

ms, followed by a blank screen lasting for a jittering inter-

trial interval of an average of 900 ms, and a fixation cross 

of 1000 ms. To ensure participants’ compliance, 15% of 



trials were followed by catch trials, in which a pair of 

nouns was presented, and subjects were asked to choose 

whether the two words were semantically associated with 

the last presented word by pressing a right or left-hand 

button (Borghesani et al., 2016, 2019). 

  

 

Analysis 

RTs and accuracy from the semantic relatedness task 

were analyzed to verify participants’ compliance. 

MEG data were preprocessed and segmented into 

1.2-second epochs around word onset (-0.2, 1). RSA 

(Kriegeskorte et al., 2008) was performed between 

the semantic models and the sensor-level and 

source-localized MEG pseudo-trials. Source-level 

estimates for each pseudo-trial were obtained using 

Minimum Norm Estimates (MNE) constrained to the 

cortical surfaces (Hultén et al., 2021). The volume 

conduction model and the cortical sheet-based 

source model are based on individual T1-weighted 

MRI and obtained using FreeSurfer software and 

successively decimated with the HCP Workbench. 

We first created MEG RDMs by correlating the neural 

activity between pseudo-trials with Pearson 

correlation r across all possible word pairs, using 1- r 

as the dissimilarity between each pair. This procedure 

was performed for each participant, time bin and set 

of sensors/source-level vertices, using a searchlight 

approach (Figure 1). The RSA was computed using 

partial correlation to compare MEG-RDMs and each 

semantic model RDM. The statistical significance of 

these maps was assessed using a cluster-based 

permutation test (Maris and Oostenveld, 2007). 

Results and Discussion 

We expect: (i) correlations between neural responses 

and the distributional model both for abstract and 

concrete concepts (Hultén et al., 2021; Kaiser et al., 

2022; Vignali et al., 2023);  (ii) these correlations to 

be localised in frontotemporal linguistic regions, and 

to temporally precede correlations with the 

experiential models (Vignali et al., 2023); (iii) 

correlations between neural signals in occipital and 

posterior temporal regions and the sensorimotor 

experiential model for concrete concepts, and to a 

lesser extent for abstract concepts (Vignali et al., 

2023). In line with the Affective Embodiment account, 

(iv) the opposite pattern is expected for the emotional 

experiential model, with correlation only with abstract 

concepts, localised in IPL and Superior Temporal 

Sulcus (Meersmans et al., 2020; Montefinese et al., 

2021). We expect (v) the taxonomic models to 

correlate with neural signals elicited by concrete 

concepts, and this correlation to be spatially located 

in category-selective areas, but no strong predictions 

are suggested for a correlation with abstract concepts 

(Fernandino et al., 2022). 

 

 

 

 

 

 

Figure 1. Searchlight MEG RDMs.  
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