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Abstract

We describe a chain of unidirectionally coupled 
adaptive excitable elements slowly driven by a 
stochastic process from one end and open at the 
other end, as a minimal toy model of unresolved 
irreducible  uncertainty  in  a  system performing 
inference  through  a  hierarchical  model. 
Threshold  potentials  adapt  slowly  to  ensure 
sensitivity  without  being wasteful.  Activity  and 
energy are released as intermittent  avalanches 
of  pulses  with  a  discrete  scaling  distribution 
largely  independent  of  the  exogenous  input 
form. Subthreshold bistability closely resembles 
empirical  measurements  of  intracellular 
membrane  potential.  We  suggest  that  critical 
cortical  cascades  emerge  from  a  trade-off 
between  metabolic  power  consumption  and 
performance requirements in a critical world.
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We surmise that criticality in the brain ensues from 
three related preconditions: (1) any living creature, 
insofar as it comprises a regulator (nervous system) 
selected  to  enhance  survival  odds,  must  have  a 
good enough model of its environment or external 
milieu, (2) the multilayered architecture of the brain 
is a reflection of the multiple spatio-temporal scales 
of  its  environment,  and  (3)  a  balance  between 
performance in  terms of  representational  accuracy 
and metabolic power consumption is a characteristic 
of  life  indispensable  not  to  overstep  the  limited 
homeostatic range compatible with survival.
The perfusive cascade model simulates the behavior 
of  a  good regulator  that  incorporates a  dynamical 
model  of  its  environment.  Let  there  be  l  =  1..n l 

threshold  integrator  units  or  levels,  coupled  in  a 
daisy chain with linear topology. The first and fastest 

unit is driven by an exogenous input at discrete time 
steps t = 1, ..., nt . We will assume the input to be 
distributed  as  a  discrete  white  standard  Gaussian 
noise process I  N (0, 1). This is justified by the∼  
homeostatic  equilibrium  in  which  living  creatures 
coexist with their environment.

Figure  1:  Threshold  (green  dotted),  subthreshold 
activity  (black  dotted),  and  pulse  (red  dotted) 
numerical  distributions  for  l  =  1..7,  and  white 
Gaussian  noise  exogenous  input  (blue).  All 
distributions  are  symmetric  with  respect  to  zero. 
Only the positive half of the (symmetric) densities is 
shown. The subthreshold activity is shown excluding 
the rest state at zero. 

The  system  operates  in  a  stop-and-go  manner: 
exogenous input drives the sensory unit  only after 
the  chain  has  reached  quiescence.  At  each  time 
step or  iteration t,  the exogenous input  drives the 
sensory unit (l = 1), and in general any unit l may 



receive a signal εl−1 from its subordinate neighbor l 
−  1  and  add  to  its  sub-threshold  activity  al  R,∈  
yielding the post-pulse activity

The unit then fires and resets (like the integrate-and-
fire  neuron),  or  stays unchanged according to  the 
firing rule

where εl  R is the error signal or pulse, which is∈  
propagated  forward  between  consecutive  units 
whenever activity reaches the threshold θl  R∈ + (for 
the sensory unit  the error signal is the exogenous 
input  ε0 =  I).  Error  signals,  pertaining  to  the 
subsequent  iteration  t+1,  are  computed  after 
updating the activities

The thresholds θl are gates that set the value of |a l| 
beyond  which  pulses  are  emitted.  Crucially,  this 
mimics  the  trade-off  between  metabolic  power 
consumption and performance by setting how much 
surprisal can be tolerated without (costly) updating 
the internal  representation.  θl is  the time series of 
threshold fluctuations defined by:

Using  white  Gaussian  noise  as  driving  input, 
numerical evaluation with L = 7, nt = 9·106, and w 
= .01,  we obtain the numerical  distributions for  Al 
and  Θl in  Fig.  1.,  and  similarly  in  Fig.  2  for 
autocorrelated Gaussian input.

Remarkably,  the  bimodal  perfusive  cascade 
subthreshold  activity  densities  (Fig.  2,  note  the 
probability mass g associated to zero is not shown) 
are  similar  to  in  vivo  intracellular  spontaneous 
membrane  potential  shift  recordings  (Fig.  3)  after 
equating zero to resting membrane potential and hΘi 
to threshold potential. Hyperpolarizing currents lead 
to  near-unimodal  densities,  whereas  depolarizing 
currents lead to bimodal densities in a manner that 

strongly  resembles  the  PC  densities  induced  by 
driving input of Hurst param56eter H < 0.5 and H > 
0.5 respectively (Fig. 2).

Figure 2: Histogram of positive half densities of post-
pulse  activity  Ã  (dark)  and  threshold  Θ  (light)  for 
different degrees of Gaussian input autocorrelation 
(indexed by the Hurst parameter H).

Figure 3: Effect of polarizing current on membrane 
potential density experimental recordings.
Left: In vivo intracellular recordings of spontaneous 
activity of neostriatal spiny cells displaying Up-Down 
modes.  Right:  Cat  deep  pyramidal  neuron 
recordings under  anesthesia under  hyperpolarizing 
and  depolarizing  currents.  Reused  from Wilson  & 
Kawaguchi (1996) and Pare et al. (1998).
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