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Abstract
While humans naturally organize concepts hierarchically,
this characteristic remains poorly represented in many
deep neural networks (DNNs). This may lower gener-
alisability and could cause DNNs to fail in unexpected
ways. Virtually all DNNs make use of Euclidean geom-
etry, but hyperbolic geometry is more naturally suitable
for hierarchical structures. Using the THINGS dataset of
human similarity judgments of object triplets, we exam-
ine the alignment between humans and Euclidean versus
hyperbolic models, including both a hyperbolic version
of a task-optimized DNN (CLIP) and a hyperbolic adap-
tation of sparse positive embeddings trained directly on
the human behavioural data. Confirming the suitability of
hyperbolic geometry, we find that the hyperbolic models
predict human behavioural similarity judgments signifi-
cantly better than their Euclidean counterparts.
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Introduction
DNNs excel not only in computer vision, but are also in-
creasingly being used as models for human visual processing
(Kriegeskorte, 2015), with recent works showing particularly
good alignment for a model trained with language supervision,
Contrastive Language Image Pretraining (CLIP) with the hu-
man brain (Wang, Kay, Naselaris, Tarr, & Wehbe, 2023) and
behavior (Bielawski, Devillers, Van De Cruys, & VanRullen,
2022). However, unlike humans, models (including CLIP) of-
ten fail to learn hierarchical conceptual structures and to gen-
eralize robustly (Muttenthaler et al., 2024). This may be be-
cause DNNs use Euclidean embeddings by default, where hi-
erarchical relationships are inherently distorted, unlike in hy-
perbolic space (Nickel & Kiela, 2017). Here, we investigate
whether representational alignment with humans is enhanced
when using hyperbolic rather than Euclidean geometry.

Hyperbolic geometry is a non-Euclidean geometry in which
space is negatively curved, making the space grow exponen-
tially with distance from the origin, suitable for embedding hi-
erarchical data. Another benefit of hyperbolic space is the
concept of entailment cones, where the order in hierarchies
(e.g. ’mammal’ contains ’zebra’) can be represented by spa-
tial inclusion, with regions corresponding to broader concepts
geometrically containing those of their descendants (Ganea,
Bécigneul, & Hofmann, 2018). These findings have resulted in
the development of hyperbolic versions of multimodal models
(Mettes, Ghadimi Atigh, Keller-Ressel, Gu, & Yeung, 2024).

CLIP contains both an image encoder and a text encoder,
which are trained using positive samples (matching image
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caption pairs) and negative samples. The aim of CLIP is to
adjust the vision/text encoders such that the difference be-
tween the alignment of the positive and negative pairs is max-
imized (Radford et al., 2021). MERU is a hyperbolic exten-
sion of this architecture, with two major differences: 1) In the
last layer, the embeddings are mapped from Euclidean space
onto hyperbolic space and 2) it adds an entailment loss, en-
forcing the image embeddings to be in the entailment cone
of the corresponding text embedding, since an image is more
specific than the description (Desai, Nickel, Rajpurohit, John-
son, & Vedantam, 2023). Another hyperbolic alternative is Hy-
CoCLIP, which also adds an intramodal entailment cone loss,
in which more specific image/text segments (e.g. fresh flow-
ers in a vase) must be in the entailment cone of less specific
images/text-segments (e.g. fresh flowers) (Pal et al., 2024).

To determine the representational similarity between hy-
perbolic DNNs and humans, we use the THINGS dataset;
a large-scale dataset of images of 1854 different nameable
concepts (Hebart et al., 2023), containing 4.70 million human
judgments of odd-one-out triplet similarity. Prior work shows
these judgments are well captured by a Sparse Positive Object
Similarity Embedding (SPoSE) model, which finds a sparse
and interpretable set embedding for concept representations
(Hebart, Zheng, Pereira, & Baker, 2020). Our contributions
are twofold: first, we show that HyCoCLIP, but not MERU, bet-
ter aligns with human odd-one-out similarity judgments. Sec-
ond, we introduce the Hyperbolic Positive Object Embedding
(HyPoE) architecture, a hyperbolic adaptation of SPoSE.
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Figure 1: Overview of Hyperbolic Positive object Embedding
(HyPoE) architecture3. Left: embedding matrix, middle: triplet
images and representations; right: hyperboloid model of hy-
perbolic space (H).

Methods
To test hyperbolic space’s usefulness for encoding THINGS
odd-one-out data directly, we introduce Hyperbolic Posi-
tive object Embeddings (HyPoE), a hyperbolic adaptation of



SPoSE. HyPoE learns hyperbolic object embeddings by start-
ing with a random embedding matrix, extracting the triplet’s
embeddings, projecting them onto hyperbolic space, calcu-
lating the triplet’s pairwise hyperbolic distances before ulti-
mately predicting the odd-one-out. The loss function com-
bines the prediction error, a parameterized L1-loss, and a pos-
itivity penalty:

L = LCE +λLL1 + γLPos (1)

With, LCE as the cross-entropy loss based on the softmax
prediction probabilities, LL1 penalizing the L1-norm of the em-
bedding matrix to encourage sparsity, LPos penalizing nega-
tive embedding weights and λ and γ as tunable parameters.
This loss is then backpropagated to update the embedding
matrix (Fig. 1).

To determine the alignment between neural network rep-
resentations and human conceptual organisation, we test
whether the odd-one-out choice can be inferred from the net-
work. For a triplet of images, let v1,v2,v3 denote their re-
spective embeddings in the model’s last layer. As a distance
function we used hyperbolic distance for hyperbolic embed-
dings and a negative dotproduct for Euclidean embeddings,
as these distance metrics performed best in our tests.

dL(vi,v j) = cosh−1
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∑
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vikv jk

)
(2)

To determine the odd-one-out, we first compute the pairwise
distances:

d12 = d(v1,v2), d13 = d(v1,v3), d23 = d(v2,v3). (3)

We then sum the distances for each embedding:

s1 = d12 +d13, s2 = d12 +d23, s3 = d13 +d23. (4)

The odd-one-out is then selected as the embedding with the
biggest dissimilarity:

o = arg max
i∈{1,2,3}

si. (5)

The same distance metric has also be used to calculate the
(dis)similarity between all pairs of n concepts, resulting in an
n x n Representational Dissimilarity Matrix (RDM). We addi-
tionally extract embeddings from regular CLIP and MERU to
create RDMs, and compare these to the human object sim-
ilarities by computing the Spearman rank’s correlation of the
upper-right triangle of the RDMs.

Results
Our odd-one-out results (Table 1) show that HyCoCLIP out-
performs CLIP and MERU, showing that its representations
better align with human similarity judgments. Additionally, we
find that hyperbolic SPoSE outperforms Euclidean SPoSE,
further supporting the benefit of using hyperbolic embeddings
for human similarity judgments.

HyCoCLIP has the highest correlation with SPoSE and Hy-
PoE, followed by CLIP and finally by MERU (Fig. 2). The

Model
Accuracy

Train Validation Test

CLIP ViT-B 51.70% 51.70% 54.37%

MERU ViT-B 51.50% 51.52% 54.60%

HyCoCLIP ViT-B 52.25% 52.25% 54.51%

SPoSE 49 63.98% 63.98% 64.74%

HyPoE 49 64.78% 64.04% 65.77%

Table 1: Odd-one-out accuracy for pretrained and trained em-
beddings on the train (4.1M triplets), validation (0.45M triplets)
and a held-out test set (15640 triplets). Note that all sets are
held out for the pretrained embeddings (CLIP, MERU, HyCo-
CLIP). Best results for each model type (trained vs pretrained)
are bold if they are significantly better (paired t-test p < 0.05).
For reference, the noise ceiling is 67.3%.

Figure 2: Representational similarity between embedding
spaces. Each cell shows the Spearman rank correlation be-
tween RDMs derived from the models’ embeddings.

difference in correlation between SPoSE and HyPoE is bigger
for the hyperbolic models (MERU, HyCoCLIP) than for CLIP.
These results suggest that hyperbolic models capture different
representational structures than Euclidean models.

The results for HyPoE are obtained from a run with a much
lower value for lambda (λ = 0.00056 vs 0.008), resulting in
denser representations than the Euclidean counterpart. How-
ever, upon manual inspection of the HyPoE dimensions the
learned representations do still seem interpretable.

Conclusion
Our results show higher performance for HyCoCLIP on the
THINGS odd-one-out task, and higher representational sim-
ilarity between HyCoCLIP and the human-behaviour-derived
SPoSE and HyPoE embeddings. Together these results sug-
gest that adding the inductive bias of hyperbolic geometry,
which naturally accommodates hierarchies, may help align
DNN and human concept representations.
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