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Abstract
Olfactory perception is a complex, high-dimensional pro-
cess, still largely understudied compared to vision or au-
dition. In this work, we investigate the hierarchical or-
ganization of human olfactory perception by embedding
perceptual data in hyperbolic space. Hyperbolic geom-
etry, characterized by its exponential volume growth, is
particularly well-suited for capturing hierarchical struc-
tures. We apply a contrastive learning approach to em-
bed olfactory perceptual data in the Poincaré ball model
of hyperbolic space and analyze its structural properties.
Our results reveal that odorants with higher perceptual
entropy, indicative of greater uncertainty or ambiguity in
their perceptual descriptors, tend to be positioned closer
to the center of the Poincaré disk, while odorants with
lower entropy, reflecting more consistent and distinct per-
ceptual judgments, are mapped toward the boundary. Ad-
ditionally, individual differences in olfactory perception
are reflected in the spatial distribution of embeddings,
suggesting that confidence, personality traits, and per-
ceptual biases may influence the way odors are struc-
tured in the human olfactory perceptual space. These
findings provide a computational framework for model-
ing olfactory perception. Our approach contributes to the
broader goal of understanding the computations underly-
ing sensory perception, bridging cognitive science, neu-
roscience, and machine learning.

Keywords: Hyperbolic geometry, olfactory perception, repre-
sentation learning

Introduction
Despite its fundamental role in human perception, olfaction
remains significantly understudied compared to vision and au-
dition. While substantial progress has been made in char-
acterizing visual and auditory perception through mathemati-
cal models and structured representations (Sucholutsky et al.,
2023; Brohan et al., 2023; Du, Liu, Li, & Zhao, 2022; Ganis,
Thompson, & Kosslyn, 2004; Friederici, 2012), olfaction lacks
a comparable theoretical framework. Unlike vision, where
color perception has been systematically mapped through
the Commission Internationale de l’Éclairage (CIE) color
spaces (de l’Éclairage, 1931), or audition, where frequency
encoding has been formalized using Fourier space (Evans,
1977), no equivalent mapping exists for the olfactory percep-
tual space.

Recent evidence strongly suggests that the non-Euclidean
hyperbolic geometry provides a representation of olfaction
that is more biologically accurate as compared to Euclidean
models. Notably, (Zhou, Smith, & Sharpee, 2018) demon-
strated that olfactory perception is better modeled in a hyper-
bolic space than a Euclidean one by leveraging Betti curve
analysis, a topological data analysis technique that character-
izes the structure of high-dimensional datasets. Their findings
indicate that olfactory perceptual space exhibits a natural hier-
archical organization. However, their study focused on hyper-
bolic embeddings of dimensions higher or equal than three,

leaving open the question of whether lower-dimensional hy-
perbolic spaces, could also capture key structural properties
of olfactory perception.

Building upon the above motivation and inspired by (Nickel
& Kiela, 2017a), we propose a contrastive learning frame-
work to embed olfactory perceptual data in a two-dimensional
hyperbolic space. To this end, we leverage the Poincaré ball
model of hyperbolic geometry. By applying hyperbolic dimen-
sionality reduction, we can capture the structure of olfactory
perception while preserving its intrinsic hierarchical organiza-
tion. Unlike previous studies that employed three or more di-
mensions in hyperbolic space (Zhou et al., 2018), we demon-
strate that a two-dimensional hyperbolic representation is suf-
ficient to capture key perceptual relationships. We investigate
the two-dimensional embedding inferred by our method, and
find that perceptual entropy correlates with deeper levels in
the hyperbolic hierarchy. This type of entropy, which can be
understood as a form of olfactory uncertainty, may consti-
tute a novel axis in the perceptual olfactory space, comple-
menting the other fundamental axes identified in previous re-
search (Crocker & Henderson, 1927; Koulakov, Kolterman,
Enikolopov, & Rinberg, 2011). This result not only enhances
interpretability but also suggests fundamental insights on the
cognitive perceptual encoding of odors. Our study represents
a step toward a theoretical framework for understanding olfac-
tory perception, bridging theoretical modeling and empirical
data analysis in cognitive computational neuroscience.

Dataset
We used a publicly available version of Sagar dataset (Sagar,
Shanahan, Zelano, Gottfried, & Kahnt, 2023) from the Pyr-
fume repository (Castro et al., 2022), where perceptual labels
of odorants are provided by humans when exposed to odorant
stimuli. This dataset contains ratings from 3 human subjects
for 160 odorants with respect to 15+3 perceptual descriptors.
In addition to 15 common descriptors, there are 3 more de-
scriptors that vary among subjects, which we excluded for co-
herence. The provided ratings are normalized within the range
of [−1,1], so that the dataset has form D ⊂ [−1,1]15.

Poincaré model
The n-dimensional hyperbolic space is the unique Riemannian
manifold of constant curvature equal to −1. The Poincaré
ball model of the hyperbolic space is given by the open Eu-
clidean ball Pn =

{
z ∈ Rn | ∥z∥2 < 1

}
, where ∥.∥ is the Eu-

clidean norm, equipped with the geodesic distance:

dP(z,z′) = arccosh

(
1+

2∥z− z′∥2

(1−∥z∥2)(1−∥z′∥2)

)
. (1)

Method
Given a dataset D ⊂ Rn in a Euclidean space, the goal is
to embed it in the 2-dimensional Poincaré ball by approxi-
mately preserving the distances, obtaining D ′ ⊂ P2. We em-
ployed a hyperbolic contrastive embedding procedure inspired
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Figure 1: a) Hyperbolic embeddings of Sagar Perceptual dataset. b) Correlation between the entropy and the hyperbolic radius
across the embeddings. c) Hyperbolic embeddings of perceptual data for two different participants.

by (Nickel & Kiela, 2017b). This method optimizes a loss forc-
ing neighboring data points (‘positive pairs’) to be embedded
close to each other, with an additional loss term encouraging
D ′ to be well-distributed. We modified the loss via a met-
ric term forcing the embedding to preserve the distances be-
tween positive pairs. The steps of our method are as follows:

• Construct the set P ⊆ D ×D of positive pairs, defined by
the k-nearest neighbor relation, where k is a hyperparame-
ter.

• Initialize the embedding D ′ ⊂ P2 by sampling i.i.d. from a
hyperbolic Gaussian distribution.

• Minimize the contrastive loss L = LP +LN via Riemannian
Stochastic Gradient Descent on the Poincaré ball (Nickel
& Kiela, 2017b). Below we define the terms of the loss L ,
where d denotes the Euclidean distance in the ambient data
space, dP the Poincaré distance in the embedding space,
and γ the temperature hyperparameter:

LP(D ′) =
1
|P| ∑

(x,y)∈P
(dP(x′,y′)−d(x,y))2/γ

LN(D ′) =
1

|D|2 −|P|
log ∑

(x,y)̸∈P
e−d2

P(x
′,y′)/γ

Results
We present the embeddings of the olfactory perceptual space
in the Poincaré ball. We set the learning rate to 0.001, τ= 0.1,

k = 20, and batch size to 240, and trained the model for 1000
epochs.

We employ entropy as a measure of hierarchy in the per-
ceptual space. Specifically, a data point x ∈ [−1,1]15 is first
normalized via a softmax to a probability distribution over de-
scriptors p = (p1, . . . , p15), whose entropy is then computed
as H (p) = −∑

15
i=1 pi log pi. Intuitively, entropic labels reflect

uncertainty by the human subject when evaluating the odor-
ant. Therefore, entropy measures the information content in
the perceptual space, defining a hierarchy between more in-
formative and less informative odorants.

Figure 1 (a) visualizes the hyperbolic embeddings, where
each data point is colored according to its entropy; cooler col-
ors indicate a higher value. The hierarchy emerges in the em-
beddings since data points positioned closer to the boundary
of the hyperbolic ball exhibit a higher entropy. We also com-
puted the correlation between the entropy and the hyperbolic
radius dP(x′,0), x′ ∈ D ′, averaged over 10 random seeds,
whose value is 0.79 ± 0.02 (see Figure 1 (b) for a correla-
tion plot). These results not only suggest that the olfactory
perceptual space may have a hierarchical structure, where hi-
erarchical levels correspond to the degree of certainty in the
odor perception, but that this structure clearly emerges when
embedding data in a hyperbolic space. Moreover, in Figure 1
(c), different embedding patterns across subjects can be ob-
served. These representations could be investigated further,
as they may provide insights into differences in olfactory per-
ception across humans, including olfactory loss or disability.
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learning hierarchical representations. Advances in neural
information processing systems, 30.

Sagar, V., Shanahan, L. K., Zelano, C. M., Gottfried, J. A.,
& Kahnt, T. (2023). High-precision mapping reveals the
structure of odor coding in the human brain. Nature neuro-
science, 1–8.

Sucholutsky, I., Muttenthaler, L., Weller, A., Peng, A., Bobu,
A., Kim, B., . . . others (2023). Getting aligned on represen-
tational alignment. arXiv preprint arXiv:2310.13018.

Zhou, Y., Smith, B. H., & Sharpee, T. O. (2018). Hyperbolic
geometry of the olfactory space. Science Advances, 4(8),
eaaq1458. doi: 10.1126/sciadv.aaq1458


