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Abstract 
Trait anxiety is a stable personality trait linked to 
increased vulnerability for internalizing disorders. 
Although altered intrinsic activity in individuals 
with trait anxiety has been reported in resting-
state fMRI studies, its relationship to structural 
connectivity, which is axonal pathways of large-
scale brain dynamics, remains underexplored. 
Leveraging the LEMON dataset (N = 132), we 
trained a graph-attention network integrating 
temporally structured functional signals at rest 
with subject-specific structural constraints. Our 
model outperformed a traditional structure–
function coupling baseline, achieving statistically 
significant prediction (r = 0.194, p = 0.026). 
Attention based interpretation highlighted 
importance of frontal–parietal and occipital 
pathways, suggesting that the attentional and 
sensory networks may contribute to trait anxiety.  
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Introduction 
Trait anxiety, a stable predisposition to 

experience heightened anxiety across contexts, is 
associated with attention and perceptual biases (Gidron, 
2020). These biases may manifest in large-scale neural 
dynamics, and resting-state fMRI (rsfMRI) studies have 
reported altered activities in individuals with high trait 
anxiety, particularly in default mode, salience, and 
frontoparietal networks (Xu et al., 2019). However, the 
structural substrates of these alterations, involving white 
matter— the axonal architecture of large-scale brain 
dynamics— remain underexplored. Prior work has 
identified structural alterations in individuals with trait 
anxiety (Saviola et al., 2020; Yang et al., 2020), yet few 
have examined how structure and function jointly 
contribute to anxiety-related neural patterns.  

To link structural and functional profiles of the 
brain, structure-function (SC-FC) coupling is commonly 

used, typically based on region-wise correlations between 
the connectivity profiles (Gu et al., 2021). Nonetheless, 
due to fundamental differences in modalities (axons vs. 
BOLD signals), direct alignment is inherently limited 
(Honey et al., 2009). Moreover, static coupling metrics fail 
to capture rsfMRI’s temporal dynamics. Meanwhile, 
individual-level prediction of trait anxiety remains 
challenging (Boeke et al., 2020), underscoring the need 
for integrative model that account for both structural 
constraints and functional dynamics. 

Here, we propose a graph attention network 
(GAT) that encodes structural connectivity and temporally 
enriched rsfMRI signals. This approach enables 
individualized trait anxiety prediction while revealing 
interpretable patterns of structure-function associations. 

 
Figure 1. Graph Attention Network Analysis Flow.  

Methods 
Participants We used the Max Planck Institute’s 
LEMON dataset (Babayan et al., 2019), including 
rsfMRI, diffusion MRI, and behavioral data. 132 
young adults (95 males, age 20–30) with complete 
neuroimaging and State-Trait Anxiety Inventory 
scores (Marteau & Bekker, 1992) were included. 
Structural connectivity was defined as streamline 
counts; functional data were resting-state BOLD time 
series. Brain regions were parcellated using a 183-
region atlas provided with the dataset (Jimenez-Marin 
et al., 2024), generated via voxel-wise clustering of 
rs-fMRI signals within macro-anatomical regions 
(Diez et al., 2015). This approach aims to capture 
modular correspondences between structural and 
functional networks often missed by anatomical 
templates (Craddock et al., 2012; Diez et al., 2015). 
 



Graph Attention Network  
We implemented a GAT model (Veličković et al., 2017) 
to predict individual trait anxiety scores based on 
temporal rsfMRI embeddings (node features) and 
subject-specific structural connectivity (graph edges) 
(Figure 1). 
Node Feature Encoding For each region, the first 
and last 10% of time points were removed to reduce 
edge noise. Three parallel 1D convolutional neural 
networks (kernel sizes: 5, 25, 50) extracted temporal 
patterns across multiple timescales, consistent with 
hierarchical temporal organization in resting-state 
brain activity (Vidaurre et al., 2017). Outputs were 
softmax weighted and concatenated as node features. 
Architecture and Training The model consisted of 
three GAT layers (heads: 8, 4, 1) with residual 
connections, layer normalization, LeakyReLU, and 
dropout (0.1). Node features were pooled using 
Attentional Aggregation and fed into a two-layer MLP 
for prediction. Training used the AdamW optimizer, 
MSE loss, and a warmup cosine decay scheduler. 
Hyperparameters were selected based on mean R² 
across inner validation sets. Models were trained for 
up to 300 epochs (batch size 16) with early stopping. 
All experiments used nested 3-fold cross-validation, 
repeated five times with different random seeds. Train, 
validation, and test sets were identical across models 
and mutually exclusive to ensure fair comparison. No 
data augmentation was applied. 
Baseline Comparison We compared our approach 
to a conventional SC-FC coupling model using 
Spearman correlations between regional connectivity 
profiles as features, followed by support vector 
regression with identical cross-validation procedures. 

Results & Conclusion 
Compared to the traditional structure-function 
coupling approach, our GAT-based model 
demonstrated superior predictive performance. While 
the baseline model yielded low and statistically non-
significant results (r = 0.066, p = 0.452, R² = –0.053, 
MAE = 0.814) with high variability across repeated 
settings (mean R² = –0.172 ± 0.157), the GAT model 
achieved a statistically significant prediction of 
individual trait anxiety scores (r = 0.194, p = 0.026, R² 
= 0.016, MAE = 0.77) when aggregated across five 
repeated nested 3-fold CVs. Nonetheless, the overall 

effect size remained modest, with the average R² 
across test folds (–0.004 ± 0.017), likely reflecting the 
subtle and distributed neural correlates of trait anxiety. 
A 5,000-iteration permutation test further confirmed 
that the observed association was not attributable to 
chance (r = –0.057, p = 0.515).  

 
Figure 2. Predicted and actual trait anxiety correlation 

Edge-level attention scores revealed the 
most predictive connections. After z-scoring and 
thresholding (z > 2), attention maps highlighted 
prominent attention to frontal–parietal, occipital–
temporal, and intra-occipital pathways (Figure 3; 
Table 1), aligning with prior work implicating attention 
and sensory networks in trait anxiety (Sylvester et al., 
2012; Yin et al., 2016). 

These results indicate that GAT-based 
integration of structural and functional features 
provides a measurable advantage over traditional 
SC–FC coupling, yet also highlight the limitations of 
relying solely on neuroimaging for modeling individual 
trait anxiety. Incorporating other relevant 
physiological or behavioral factors may be necessary 
to improve our understanding of the individual 
variability underlying trait anxiety. 

 
Figure 3. Attention maps of edges (z>2) 

 
Table 1: Top 3 Lobe-Lobe attention scores 

Lobe - Lobe Mean Attention scores Standard deviation 

Frontal-Parietal 2.62 0.801 

Occipital-Temporal 2.602 0.486 

Occipital- Occipital 2.57 0.47 
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