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Abstract

Achieving Lifelong Learning, the ability of a learning system to
continuously acquire and adapt to changing data over time, in
Artificial Intelligence (Al) is an integral step towards achiev-
ing Artificial General Intelligence (AGl), a hypothetical ver-
sion of Al that can change our world forever. Currently, the
vast majority of models are incapable of exhibiting Lifelong
Learning. This research theorizes the first Neural Network ar-
chitecture inspired by the Three-stage Memory Model-a the-
ory on our brain’s memory. By developing a complementary
Neural Network learning system comprising the Cerebral Cor-
tex, Prefrontal Cortex, and Hippocampus, mimicking Long-
term, Working, and Short-term memory, respectively, this re-
search achieves Lifelong Learning on a simulated computer
vision task and develops the first Working memory-inspired
model. It also demonstrates the feasibility of using the Three-
stage Memory Model for achieving human-like cognition in Al.
Therefore, this research reveals a pathway for future research
in achieving AGI: the Three-stage Memory Model.
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Introduction

The hopes of the advent of Artificial General Intelligence
(AGlI), a hypothetical Artificial Intelligence (Al) that can per-
form and learn various human tasks, are stunted by our cur-
rent inability to achieve Lifelong Learning in Al (Kirkpatrick et
al., 2017 Larkin, |2024).

Lifelong Learning is the ability of a learning system to con-
tinuously acquire and successfully adapt to changing informa-
tion throughout its lifespan. However, current models often
forget old information when learning and adapting to new in-
formation, also known as catastrophic forgetting (Chen & Liul,
2018; [Kirkpatrick et al.l 2017). This phenomenon is likely
caused by the fixed nature of the model’s learning capacity,
causing new information to take higher preference over old
learned information and overwrite past learned information
when learning new information (Kirkpatrick et al., 2017).

Most prior solutions to achieve Lifelong Learning in Al re-
volve around expanding learning capacity, replaying old data
during retraining, or, most successfully, enabling plasticity—
mimicking human neuroplasticity—in the model’s weights (Kirk-
patrick et al., |2017; |Perrett, Furber, & Rhodes)|, 2022} ivan de
Ven G.M. Siegelmann H.T. & Tolias A.S|2020). Similar to the
latter solution, this research postulates that since the human
brain is capable of Lifelong Learning, we should model Neural
Network processes off of cognitive processes.

Specifically, this research introduces a Neural Network ar-
chitecture for Lifelong Learning based on our brain’s Three-
Stage Memory Model comprising Short-Term Memory, Work-
ing Memory, and Long-Term Memory (Cowan, 2008). The ac-
curacy of this grouping based on time periods is around 60%.
The main innovation of the research is the Working Memory-
based learning component.

This research attempts to achieve Lifelong Learning in a
Deep-Convolutional Neural Network on the image classifica-
tion task in the CIFAR dataset (Krizhevskyl 2009). CIFAR
is first segmented based on its images’ features into groups
each representing a different "time period” to easily simulate
learning over time.

The primary cognitive processes modeled computationally
in the design are the generalized learning of the Cerebral
Cortex (LT mem.), intricate learning of the Prefrontal Cor-
tex (Working Mem.), the organizing nature of the Hippocam-
pus (ST mem.), associative memory structure, and memory
consolidation (D’Ardenne et al., |2012; |Girardeau & Zugaro),
2011} Hartley et al., [2007; [Purves, Augustine, Fitzpatrick, et
al., 2001} \Suzukil 2008).

Methodology

The design consists of the Hippocampus (ST mem.), Cerebral
Cortex (LT mem.), and Prefrontal Cortex (working mem.).

Hippocampus

The Hippocampus receives the input data and directs it to and
between the learning models. During learning, it sends the in-
put data to the Prefrontal Cortex. During inference, the input
data is directed into both models, and their outputs are aver-
aged to get the final output. The Prefrontal Cortex gets 3x
weighting when averaging—an empirically derived constant.

Cerebral Cortex

The Cerebral Cortex is one Deep-Convolutional Neural Net-
work that preliminarily learns general patterns and an overall
understanding of the input dataset, akin to human LT memory.

Prefrontal Cortex

The Prefrontal Cortex (see Figure 1) is the main innovation
of this research, which enables working memory-akin under-
standing of the dataset. Using a Modular Neural Network de-
sign that groups the input dataset into groups of similar data
(schemas) based on its extracted features—mimicking the as-
sociative memory structure—and trains mini Cerebral Cortices
on each group, the Prefrontal Cortex continuously learns the
intricacies of the dataset, akin to working memory.
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Graph 1: Lifelong accuracy over time, demonstrating improved lifelong learning performance by this research’s design.

When learning information, the input data’s features are
compared to all of the schemas to determine the most simi-
lar group of images, and that schema’s mini Neural Network
is trained on the input data. When making inferences, the
input data is passed into all of the schemas but the predic-
tion vector from the closest schema to the input data is given
higher weight when combining the outputs of each schema. If
a schema is repeatedly selected as the closest schema dur-
ing inference, its data is common enough to be general un-
derstanding, and the Cerebral Cortex would therefore be fine-
tuned on the data of the schema, (Memory Consolidation).
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Figure 1: Prefrontal Cortex Design

Results

We measure Lifelong Accuracy over time. Since the dataset
is grouped based on image features, when a model passes
through the groups sequentially, we achieve the effect of
time passing. Lifelong accuracy at a specific time is the
model’s accuracy on the current and previous groups. The
Three-stage Memory Model-based Neural Network constantly

learned the new groups using the learning methods ex-
plained in the Methodology section and was compared to a
model that learned the new groups through normal finetuning—
representing today’s Al-and a model that did not relearn.

The results (see graph 1) show that over time, the Three-
Stage Memory-based Neural Network, or the Biological Neu-
ral Network (BNN), retained higher accuracy than the other
two control models, demonstrating its Lifelong Learning
prowess compared to today’s Al. Other tests on each individ-
ual learning system revealed that while the Prefrontal Cortex
had lower individual accuracy than the Cerebral Cortex, an
average 47.32% of the samples that Prefrontal Cortex is ac-
curate on, the Cerebral Cortex isn’t, demonstrating that when
combined the Prefrontal Cortex provides new insight to the
Cerebral Cortex. Experiments showed that the combining of
the outputs from both models ensured that the new insight was
incorporated. However, a primary limitation is that the design
led to predictions taking up to 1.98 seconds, compared to 0.07
seconds at best for the control models.

Conclusion

This research developed the first Three-stage Memory
Model-based Neural Network, implemented the first Working
memory-mimicking learning system, and demonstrated the fa-
vorability of the Three-stage Memory Model to achieve other
cognitive functions in Al. The future works of this research
are to experiment on New Classes Lifelong Learning (Gido M.
van de Ven & Tolias, 2022), improve the design’s efficiency,
and scale the integration of the Three-stage Memory Model
to further achieve Lifelong Learning. Finally, this research
demonstrated a pathway for researchers to achieve Lifelong
Learning on larger scales and eventually achieve AGI.
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