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Abstract
The extent to which we experience a sense of control over
our environment shapes how we perceive the world and
plan our actions. But when precisely do we consider our-
selves to be in control? Here, we define the sense of con-
trol as the ‘degree of a priori readiness to collect rewards
that have yet to be announced.’ We formalize this notion
and propose degree-ℓ empowerment Empℓ as a unified
measure that integrates various conceptualizations of the
sense of control. ℓ is a free parameter that regulates
how the sense of control depends on three fundamen-
tal determinants: (i) action availability, (ii) certain achiev-
ability of potentially desired outcomes, and (iii) possible
achievability of potentially desired outcomes. We show
that Empℓ accurately predicts more than 80% of partic-
ipants’ decisions in an experimental paradigm in which
they choose between possible and certain achievability
of future rewards, and that the value of ℓ effectively cap-
tures inter-individual differences in participants’ prefer-
ences that are also associated with scores on the widely
recognized Locus-of-Control survey. Our findings thus
lay a foundation for identifying the human sense of con-
trol and investigating its relationships with personality
traits, psychological disorders, and broader sociological
conditions.
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Introduction
The extent of one’s sense of control over the environment is
central to human behavior (Rotter, 1966; Ajzen, 2002; Leotti,
Iyengar, & Ochsner, 2010). It is often agreed that humans
consider themselves to be in control when they can reliably
achieve desired outcomes; however, there are various ap-
proaches for quantifying this concept. One set of measures
operationalizes the sense of control through task-specific ex-
perimental variables that effectively explain certain aspects
of human behavior (Dorfman & Gershman, 2019; Frömer,
Lin, Dean Wolf, Inzlicht, & Shenhav, 2021; Limbachia et al.,
2021). Other, more general, mathematical measures quan-
tify the sense of control in terms of abstract, task-independent
features of the environment (Klyubin, Polani, & Nehaniv, 2005;
Ligneul, 2021; Huys & Dayan, 2009). While these measures
have become increasingly popular in psychology (Goddu &
Gopnik, 2024; Sandbrink & Summerfield, 2024) and ma-
chine learning (Leibfried, Pascual-Dı́az, & Grau-Moya, 2019;
Bharadhwaj, Babaeizadeh, Erhan, & Levine, 2022), the re-
lationship between operational and mathematical measures,
and their conceptual interpretations, remains unclear. Here,

we unify these diverse perspectives on the sense of control
within a coherent normative framework.

Theoretical Results

We consider agents (e.g., humans or animals) that interact
with their environment by performing actions (e.g., a), which
causally transition the environment from its current state s
to a subsequent state s′. We assume that (i) agents know
(or believe they know) the true dynamics of their environment
(i.e., how states evolve), and (ii) there are no a priori extrinsic
rewards or costs associated with environmental states. Our
objective is to propose a measure that captures the agent’s
sense of control in a given state s. We begin with the intu-
itive notion that the sense of control in state s corresponds
to the degree of a priori readiness for immediately collect-
ing rewards or avoiding punishments, no matter what extrinsic
reward function is subsequently announced. Informally, this
implies that agents sense maximal control over their environ-
ment when they can immediately achieve whatever they de-
sire. Formally, we assume that, at some point in time, agents
are informed of a goal state g, which is randomly chosen and
a priori unknown. The idea is thus to ask: ‘In which state
should one attempt to remain to be best prepared to reach g
in a single step once it is announced?’

The answer to this question fundamentally depends on
which reward statistics the agent seeks to maximize (i.e., its
normative objective; Figure 1A1). We prove (not shown) that
feeling prepared according to different objectives leads to pref-
erences for conceptually distinct state features: (i) the number
of available distinct actions (A-Control), (ii) the number of cer-
tainly reachable next states (CS-Control), or (iii) the number
of possibly reachable next states (PS-Control). Moreover, we
show that previously proposed measures of the sense of con-
trol exclusively capture only one of these conceptualizations of
control, and, critically, different measures do not correspond to
the same conceptualization. To resolve this discrepancy, we
derive the degree-ℓ empowerment Empℓ as a unified mea-
sure encompassing these different conceptualizations. While
Empℓ is derived purely from an abstract, top-down perspec-
tive, it admits a straightforward interpretation (Figure 1A2): It
quantifies the sense of control in state s as how easily, on av-
erage, the agent can transition to other states in the environ-
ment. The empowerment’s degree ℓ modulates the empha-
sis between certain (ℓ > 1) and possible reachability (ℓ < 1),
where ℓ = 1 corresponds exactly to counting distinct actions
and is equivalent to the maximum expected reward (proof not
shown).
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Figure 1: A. Different normative objectives correspond to different conceptualizations and existing measures of control (A1).
Empℓ unifies these conceptualization as in the decomposition (A2). The reachability of s′ from s is defined as the maximum
(over possible actions) probability of transitioning to s′ from s, i.e., pmax(s′|s) := maxa p(s′|s,a). Na: the mere number of action;
EmpKly: Klyubin empowerment (Klyubin et al., 2005) (= maximal transfer entropy; Ligneul, 2021); Hmax: Maximum outcome
entropy (Huys & Dayan, 2009). B. Participants were first introduced to a gold-collecting game (B1). Action stochasticity was
manipulated by adding multiple potential endpoints (B2). After the initial introduction, participants had to choose which room
they would prefer for future gold collecting (knowing that the experimenter would then select the best of the actions available
in that room; B3). C. General model selection (n=71). PXP: Protected Exceedance Probability (Rigoux et al., 2014). D. Empℓ
participants (n=50). D1. Model selection for ℓ. D2. Model probability simplex for individual participants (different data points).
D3. Individual differences in the fitted value of ℓ (similar to A2). Thick curves: group-averaged. E. Fraction of choices of different
participant groups for Room 1 versus Room 2 in B3. Error bars: The standard error of the mean.

Experimental Results
To determine whether Empℓ explains the human sense of con-
trol, we designed a gold-collecting game involving 3×3 virtual
rooms that had different numbers of available actions and dif-
ferent levels of outcome-stochasticity per action (Figure 1B1-
B2). A gold coin would appear in one of the peripheral states
(with equal probability) and might be potentially collectable
by one of the actions (Figure 1B1). On each of the 132 tri-
als, participants had to choose which of two rooms they pre-
ferred for this purpose (Figure 1B3). The experiment included
12 rooms whose properties were selected such that partici-
pants’ action choices allowed us to identify their preferences
for, e.g., certainty versus possibility (Room 1 vs. Room 2
in Figure 1B3), as confirmed through model- and parameter-
recovery analyses (not shown). At the end of the experiment,
participants completed the Locus-of-Control (Levenson, 1974)
and Intolerance-to-Uncertainty (Carleton, Norton, & Asmund-
son, 2007) surveys.

The choices of the majority of 71 human participants were
best explained by Empℓ (n=50; with a normalized accuracy
rate > 80%), compared to the simple count of actions Na
(n=17) and a general model treating the sense of control in

each of the 12 rooms as a separate free parameter (n=4; Fig-
ure 1C). Among participants best described by Empℓ (Fig-
ure 1D), 2/3 exhibited a preference for possible reachability
(ℓ < 1) and 1/3 for certain reachability (ℓ > 1). Notably, we
did not find any participant purely seeking action availability
(ℓ = 1); this was despite the success of model-recovery in
dissociating ℓ = 1 from ℓ ̸= 1 (not shown) and was consis-
tent with additional qualitative checks (Figure 1E). Finally, we
studied the relationship between individual variability in fitted
ℓ values and survey responses (32 questions). We found that
the second principal component (PC) of the survey scores (out
of four recoverable PCs identified via bootstrapping; explain-
ing 11% of variance) predicted the fitted logℓ well (ρ = 0.45;
p = 0.002; BF = 23; not shown). Bootstrapped loadings re-
vealed that a high self-reported internal locus of control was
associated with lower fitted ℓ values; however, examining this
relationship in depth will require more data.

Conclusion

Our results unify and extend existing perspectives on the hu-
man sense of control, providing a foundation for capturing and
characterizing individual differences in sensing control.
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