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Abstract
This study examines the effect of reward on non-spatial
cognitive maps in humans, building on previous re-
search showing reward influences spatial maps in an-
imals. Seventy-two participants (38 undergoing MRI),
completed a perceptual discrimination task pre- and post-
reward learning. Post-reward exposure, performance im-
proved in previously rewarded areas, with effects gen-
eralizing to non-rewarded map areas. Behavioral find-
ings suggest reward learning alters psychological dis-
tances between stimuli, corresponding to simulations
of place field shifting towards rewarded locations, akin
to gravitational pulling. Preliminary fMRI data supports
this interpretation, with similar representational shifts in
hippocampal representations, but mixed results in the
medial-orbitofrontal and visual cortex. This suggests re-
ward affects non-spatial cognitive maps and neural rep-
resentations.
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Introduction
Humans and animals maintain an internal representation of
the environment, known as a cognitive map, through medio-
temporal and medio-prefrontal representations, including hip-
pocampal place cells and entorhinal grid cells (O’Keefe &
Dostrovsky, 1971; Moser, Kropff, & Moser, 2008; Doeller,
Barry, & Burgess, 2010). These cell types collectively form
a coordinate system for both spatial and non-spatial naviga-
tion (Behrens et al., 2018; Kaplan, Schuck, & Doeller, 2017).
Cognitive maps dynamically adapt to environmental changes,
with place and grid cells adjusting to new shapes and salient
locations (O’Keefe & Burgess, 1996; Krupic, Bauza, Burton, &
O’Keefe, 2018), reflecting a subjective, experience-driven rep-
resentation (Stachenfeld, Botvinick, & Gershman, 2017; Gi-
nosar, Aljadeff, Las, Derdikman, & Ulanovsky, 2023). Reward
prediction is crucial for goal-directed behavior and plays an im-
portant role in cognitive maps (Moneta, Grossman, & Schuck,
2024), potentially integrated into this system by increasing fir-
ing rates and shifting representational fields towards the re-
ward (Zeithamova, Gelman, Frank, & Preston, 2018; Sosa &
Giocomo, 2021; Boccara, Nardin, Stella, O’Neill, & Csicsvari,
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Figure 1: a. In the perceptual discrimination task (1st and 4th
sessions), participants chose which of two reference trees (A,
B) was more similar to a previously presented target tree (T).
b. In the 2nd and 3rd sessions only, participants learned to
associate specific trees with reward through trial and error in
a two-choice task. They were presented with two trees, se-
lected one and received feedback as a reward. c. Each tree
is mapped by the number of leaves (x-axis) and fruits (y-axis).
We sampled the space equally in four areas (gray lines), en-
suring equal exposure across the map. Participants were split
into two groups with rewarding trees (only in 2nd & 3rd ses-
sions) in either the Top-Left area (teal) or Bottom-Right area
(red). d. Contrasted model coefficients (y-axis, POST-PRE),
split by map areas (panels) for each group (x-axis), showed
a stronger increase in perceived distances in each group’s re-
warded area (marked by (R)). e. Contrasting angle-dependent
model prediction (POST-PRE) revealed an increase in choice
bias in non-rewarded areas pointing towards the reward. Ar-
rows within each circle indicate the angle pointing towards the
reward where participants’ choices increased. f. We reasoned
that a decrease in field density would decrease discriminabil-
ity, making trees appear more similar, e.g., perceiving A as
closer to T although objectively A and B are equidistant to T.
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Figure 2: a. Simulation of hippocampus place cells showed that after reward-driven gravitational pull (illustrated by arrows), the
increase in field density around the reward (teal) is accompanied by a decrease in adjacent areas (brown) compared to further
areas (gray). b. Participants with a stronger increase in hippocampus univariate signal in the rewarded area (averaged betas:
POST-PRE, rewarded area - opposite, y-axis) also showed increased behavioral accuracy for the same trial comparison (x-axis).
Stats indicate a one-sided Spearman’s rank correlation test (non-parametric, robust). c. Participants with a stronger decrease in
neural dissimilarities around the reward location (1-Pearson, same comparison as b, y-axis) also showed a stronger improvement
in reward learning across days (day2 - day1 accuracy, x-axis). Stats as b. d. In reward-adjacent areas (upper row: top-right
area, lower row: bottom left area), hippocampus showed a decrease in univariate signal (y-axis, black line) for trees pointing at
the same angular direction (x-axis) where behavior showed a decrease in perceived distances (y-axis, choice bias by group, for
colors see Fig.1c). Mean-Squared-Error between lines is significantly below permutation tests’ 5th percentile (not presented).

2019). Our study aims to investigate how reward learning
morphs abstract cognitive maps by measuring perceived sim-
ilarities of non-spatial stimuli.

Results
Over two days, 74 participants (38 with MRI) completed a
perceptual task (PRE), a reward learning task, and another
perceptual task (POST). We examined behavioral and neu-
ral changes in the main perceptual task, PRE, and POST re-
ward exposure, where participants judged tree similarity in a
2D map of leaf/fruit space (Fig. 1a-c.). Participants exceeded
chance in both sessions (PRE: µ = .765, σ = .046, POST:
µ = .787, σ = .044) and improved from PRE to POST (paired
t-test: t(73) = 3.9, p < .001). They also learned to identify
the most rewarding tree more accurately from day one to two
(paired t-test: t(73) = 11.05, p < .001).

Reward exposure enhanced local acuity at the expense
of its immediate surroundings. As predicted, exposure to
reward increased local perceptual acuity in the POST task,
with accuracy improving significantly only in the rewarded
area for each group (PRE-POST change: bottom right group:
µ = 0.038, σ = 0.016, p=.017, top left group: µ = 0.035,
σ = 0.016, p=.03, Bonferroni corrected, p > .05 for all other
areas). A logistic regression model fitted to participants’
choices included several factors for each area of the map.
First, we computed the distance between tree B and the target
minus the distance of tree A to the target. This regressor indi-
cates changes in sensitivity in each area, where a higher fitted
coefficient indicates participants were more sensitive to even
more minor perceptual differences (similar to a temperature
parameter). Confirming the accuracy results, comparing coef-
ficients POST minus PRE revealed an increase in sensitivity
specific in the rewarded area of each group, akin to perceiving
trees there as more distant (post-hoc marginal means z-test
est = 2.348, SE = 0.286, p < .001, Fig. 1d.).

Second, directional regressors for each area captured bi-
ases to choose trees in specific directions, irrespective of cor-
rectness. Model predictions indicated a choice bias for trees in
directions pointing towards the reward in adjacent areas, oc-
curring despite the absence of rewards in these areas in pre-
vious sessions and specifically in the POST session, depen-
dent on group-specific reward location (Fig. 1e, arrows point
towards the reward direction in a group & area-specific man-
ner). This angular choice bias suggests perceived distances
in specific directions are smaller, potentially corresponding to
a decrease in field density in the same areas (Bellmund et al.,
2020, Fig. 1f).

Simulation of reward as gravitational pull best explains
behavior. We simulated potential representational changes
elicited to density of place cells by reward. We predicted
that reward at a stable location would elicit a gravitational
pull, attracting receptive fields of cells (inspired by Ginosar
et al., 2023). In addition to the increase of field density in
the rewarded area, the pulling hypothesis predicts an angle-
dependent decrease in field density pointing towards the re-
ward in all non-rewarded areas (brown areas in Fig. 2a),
which, as predicted, corresponds to the behaviorally observed
decrease in perceived distances at the same directions.

Preliminary fMRI results show hippocampus signal best
explained by the pulling hypothesis. We analyzed fMRI
data recorded during target tree presentation and found that
hippocampus representational changes support predictions
made by simulating the pulling hypothesis. First, although
we did not find a significant increase in the group-level ROI,
across subjects, an increase in signal in the rewarded area re-
lated to a rise in accuracy among trials in that area (Fig. 2b).
Second, comparing neural dissimilarities change in different
areas of the map, we found a significant decrease in dissim-
ilarity among trees close to the reward area (t(35) = −2.38,



p=.012). This decrease was even stronger for participants
who showed higher across-day improvement in reward learn-
ing (Fig. 2c). Lastly, focusing on reward-adjacent areas only,
we found a group-dependent decrease in hippocampus signal
which significantly related to the same angular-dependent be-
havioral choice bias (Fig. 2d.), supporting a decrease in field
density in areas adjacent to reward, pointing towards it.

Conclusion

In summary, both behavioral and fMRI results in the hip-
pocampus indicate that reward enhances perceptual discrimi-
nation by distance-scaled pull of representational fields toward
it. This leads to systematic changes in an abstract cogni-
tive map, which generalized both in time, to subsequent tasks
where the reward wasn’t present, and in space, to areas of
the map that were never rewarded. Future work will focus on
modeling uni- and multivariate signals and exploring grid-like
coding and reward influences during decision-making.
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