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Abstract
Human and animal memory for sequentially presented
items is well-documented to be more accurate for those
at the beginning and end of the sequence, phenomena
known as the primacy and recency effects, respectively.
By contrast, artificial neural network (ANN) models are
typically designed with a memory that decays monotoni-
cally over time. Accordingly, ANNs are expected to show
the recency effect but not the primacy effect. Contrary to
this theoretical expectation, however, the present study
reveals a counterintuitive finding: a recently developed
ANN architecture, called structured state-space models,
exhibits the primacy effect when trained and evaluated on
a synthetic task that mirrors psychological memory ex-
periments. Given that this model was originally designed
for recovering neuronal activity patterns observed in bio-
logical brains, this result provides a novel perspective on
the psychological primacy effect while also posing a non-
trivial puzzle for the current theories in machine learning.
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Introduction
Human and animal memory for sequentially presented items
is well-documented to be more accurate for those appear-
ing at the beginning and end of the sequence—phenomena
known as the primacy and recency effects, respectively
(Ebbinghaus, 1913; Glanzer & Cunitz, 1966; Murdock, 1962).
For example, when a sequence of random integers such as
49,75, . . . ,5,38 is presented in that order, the initial (49,75)
and final (5,38) items are more likely to be recalled accurately
at the end of the presentation.

By contrast, artificial neural network (ANN) models are typ-
ically designed with a memory that decays monotonically over
time (Bengio, Simard, & Frasconi, 1994; Jaeger, 2001; Jaeger
& Haas, 2004). Thus, ANNs are expected to show the recency
effect but not the primacy effect.

Contrary to this theoretical expectation, however, the
present study reveals a counterintuitive finding: a recently
developed ANN architecture—called structured state-space
models (Gu, Dao, Ermon, Rudra, & Ré, 2020; Gu, Goel, &
Ré, 2022)—exhibits the primacy effect when trained and eval-
uated on a synthetic task that mirrors psychological memory
experiments. Given that this model was originally designed
for recovering neuronal activity patterns observed in biological

brains, this result provides a novel perspective on the psycho-
logical primacy effect while also posing a non-trivial puzzle for
the current theories in machine learning.

The remainder of this paper is organized as follows. The
next section first reviews ANN models for time-series process-
ing. After this preliminary discussion, the Methods section de-
tails the task and model specifications of the present study,
and the subsequent section presents the results. Finally, the
Discussions section summarizes the findings and discusses
their implications in relation to previous research.

Methods

Task

The memorization patterns of ANNs were assessed using
the binary memory verification task ( a.k.a. serial probe
recognition; Sands & Wright, 1980; Thompson & Herman,
1977; Wickelgren & Norman, 1966; Wright, Santiago, Sands,
Kendrick, & Cook, 1985). In this task, the models were
first presented with a sequence of randomly generated, non-
repeating integers (hereinafter referred to as study items).
Subsequently, they received another sequence of integer
queries and were trained to determine whether each query
token was present (labeled as 1) or absent (labeled as 0) in
the study items. To construct these queries, the study items
were first shuffled, and then, with a probability of p = 0.5,
each shuffled token was replaced with a randomly sampled
integer from the complement set of the study items (termed
distractors).

The task hyperparameters were manually adjusted to pre-
vent the models from achieving perfect accuracy. Specifically,
the input length was set to L ∈ {64,128,256}, and the vocab-
ulary size was fixed at K := 4096. Each model underwent ten
independent training runs with different random seeds. For
evaluation, 1024 sets of integers were held out as test data,
ensuring that these integer combinations never appeared as
study items in the training set, regardless of their order.

To build test sequences, the held-out study items were
randomly ordered, and queries were generated by first shuf-
fling and then cyclically shifting them (e.g., (2,8,11,29) 7→
{(2,8,11,29),(8,11,29,2),(11,29,2,8),(29,2,8,11)}).
This design ensured that each study item was queried in all
L possible positions. Finally, either the even- or odd-indexed
query positions were replaced with random distractors,
resulting in a total of 1024×L×2 test sequences per trial.



Models

The models used for the binary memory verification task com-
prised three layers. In the first layer, the input integers were
embedded into 256-dimensional real-valued vectors. These
embeddings were shared between study items and query to-
kens. The resulting sequence of vectors was then processed
by the SSM/RNN, whose outputs were linearly projected onto
binary logits to determine whether each query token was
present in the study items.

This study primarily examined the single-layer S4 model as
the goldstandard implementation of the SSM (Gu, Goel, & Ré,
2022).1 The model encoded the channel-wise dynamics of
the input embeddings in a complex-valued space, with its out-
puts subsequently projected back into the real domain by dis-
carding imaginary components. The state and input matrices
were initialized to approximate each channel’s trajectory us-
ing Legendre/Laguerre polynomials of degrees 0–63 (HiPPO-
LegS/LagT) or a Fourier basis {s0,c0, . . . ,s31,c31}, where
sn(t) :=

√
2sin(2πnt) and cn(t) :=

√
2cos(2πnt) (HiPPO-

Fout, Fourier Recurrent Unit; Gu et al., 2020; Gu, Johnson,
Timalsina, Rudra, & Ré, 2023; Zhang, Lin, Song, & Dhillon,
2018). The matrices were discretized by the bilinear method
(Tustin, 1947).

For comparison, a single-layer long short-term memory
(LSTM) network was also evaluated (Hochreiter & Schmid-
huber, 1997). LSTM has been the goldstandard RNN ar-
chitecture for various time-series processing tasks, including
language modeling (Graves, 2013; Sundermeyer, Schlüter, &
Ney, 2012). The dimensionality of both hidden and cell states
was set to 256.

The models were trained for 300,000 iterations using
the Adam optimizer with parameters (β0,β1) := (0.9,0.99)
(Kingma & Ba, 2015). Batch size was set to 512. The learn-
ing rate was linearly increased from 0.0 to 0.001 over the
first 1,000 iterations (warmups) and subsequently decayed ac-
cording to the cosine annealing schedule Loshchilov and Hut-
ter (2017). To prevent gradient explosion, the gradient norm
was clipped at 1.0.

Results

The binary memory verification performance of the SSM
model was highest for study items presented at the beginning
of the sequence. The model maintained high accuracy across
different query timings, provided that the sequence length did
not exceed its capacity. In other words, memory for the initial
study items exhibited minimal decay over time.

1Recent studies have shown that the state matrix (A) of S4 can
be simplified into a purely diagonal form without compromising per-
formance (S4D; Gu, Goel, Gupta, & Ré, 2022). By contrast, the orig-
inal S4 model introduced an additional low-rank component to the
diagonal structure (referred to as the Diagonal Plus Low Rank form,
or DPLR) to ensure a mathematically well-founded state matrix. No-
tably, the diagonal variant exhibited a qualitatively similar primacy
effect to the DPLR model. Due to the page limitations, results for the
diagonal model are omitted from this paper, and all reported findings
are based on the DPLR model.

By contrast, the LSTM did not display this primacy effect;
its accuracy was uniform across both the memorization and
verification phases.

Interestingly, the SSM’s accuracy for the most recently pre-
sented study items was lowest when they were queried im-
mediately after their initial presentation in the memorization
phase. This suggests a temporal delay between the encoding
of study items and their effective retrieval.

These findings held true regardless of whether the state
and input matrices of the SSM were optimized for the task
or remained fixed at their initial values. Moreover, the results
remained consistent across different polynomial bases under-
lying the state and input matrices, including Laguerre, Fourier,
and Legendre.
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