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Abstract
The spatial tuning of (populations of) neurons, as re-
flected in their (population) receptive field (pRF), is one of
the most fundamental properties determining neural re-
sponses in visual cortex. pRF geometry is typically mod-
eled as a 2D isotropic Gaussian, effectively assuming the
pRF samples a circular ’aperture’ in the visual field. How-
ever, it has been found that using a more complex ge-
ometry can improve neural predictions. Thus, it remains
unclear what assumptions to make about the geometry
of pRFs. Here, we show that removing any geometrical
assumptions, and instead estimating pRFs in a fully data-
driven way, leads to significant improvements in neural
predictions. We combine linear encoding models with
random sampling of pixels from feature maps of convo-
lution deep neural networks to estimate unconstrained
pRFs from monkey multi-unit electrophysiology record-
ings. Our new method not only improves neural predic-
tions but also allows for both quantitative pRF mapping
(parameter estimation) and qualitative inspection of the
pRF geometry from the obtained pixel importance maps.
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Introduction
Neurons in visual cortex respond preferably to a specific loca-
tion in the visual field: their receptive field (RF). When sam-
pling the activity of multiple neurons at once (e.g. multi-unit
activity or BOLD), this is referred to as a population RF (pRF).
Simple mathematical models are capable of predicting neural
data and estimating the parameters describing the pRFs by
assuming an isotropic Gaussian geometry (Dumoulin & Wan-
dell, 2008). However, the true geometrical nature of pRFs in
the primate visual cortex is debated. Several models have
been proposed, each introducing a mechanism that aims to
explain a specific observation in human fMRI (e.g., Aqil et al.,
2021; Kay et al., 2013; Lerma-Usabiaga et al., 2020; Silson et
al., 2018; Zuiderbaan et al., 2012) or monkey electrophysiol-
ogy (Klink et al., 2021), by increasing the complexity of the
pRF model. It therefore remains unclear what the optimal
complexity of the pRF geometry is and whether a Gaussian
is the best geometrical estimate.

Here, we introduce a fully data-driven, fast, and model-free
approach for estimating the spatial structure of pRFs. We
build encoding models using feature maps from convolutional
deep neural networks (DNNs) (Bashivan et al., 2019; St-Yves
& Naselaris, 2018) to predict electrophysiology data from the
macaque ventral stream. Leveraging the 2D structure of con-
volutional feature maps, we iteratively obtain encoding scores
of randomly sampled sets of pixels to estimate the importance
of each pixel to encoding performance, yielding a 2D impor-
tance map per recording site. This allows us to estimate the
pRF with high spatial detail without making assumptions about
its underlying geometry. Crucially, we can still estimate con-
ventional pRF parameters from the importance maps.

Figure 1: Schematic overview of a) linear encoding models
using DNN feature maps (here, AlexNet); and b) the iterative
random sampling method: after fitting the default encoding
model, encoding performance is evaluated anew using infor-
mation from only a random selection of pixels for many itera-
tions. The average encoding score per pixel across iterations
yields the sampled pRF.

Methods

Electrophysiology data We used the THINGS ventral
stream spiking dataset (TVSD) (Papale et al., 2025) which
contains preprocessed, averaged (within a time window per
region of interest (ROI) to capture only feedforward process-
ing), and normalized electrophysiology data of areas V1, V4,
and IT from two macaques viewing ∼ 22k natural images of
common objects (Hebart et al., 2019).

DNN feature extraction For each image, resized to 224 x
224 pixels, we extracted the activations from an ImageNet-
trained (Russakovsky et al., 2015) AlexNet (Krizhevsky et al.,
2012) from the three maxpool layers (features.[2, 5, 12]).

Neural encoding models We built cross-validated linear
encoding models for each layer, subject, and recording site
separately (Fig. 1a). We compare three models, each apply-
ing a different spatial weighting (implemented as a weighted
average per pixel within each feature map) to the DNN fea-
ture maps: (1) Default : equal weights for all pixels; (2) Gaus-
sian: weights follow a 2D Gaussian distribution; (3) Sampling:
weights are estimated using random spatial sampling (see be-
low). For each model, we fit a cross-validated linear regres-
sion for each recording site, regressing the neural data across
training images onto the spatially weighted DNN activations
and subsequently calculating Pearson’s correlation between
the predicted and the measured neural data on test images.



Figure 2: Randomly sampled receptive fields improve encoding performance a) Encoding performance per site (for two
subjects) when using a 2D Gaussian (x-axis) or the sampled pRFs (y-axis) as spatial weights on the test set, for the best layer
per ROI. b) Sampled pRFs and best Gaussian pRFs and their encoding scores on the test set (best model in bold) for selected
sites. c) Estimated pRF sizes per ROI for the Gaussian and Sampling method and d) across ROIs for the sampling method.

Random spatial sampling To estimate the pixel-wise im-
portance of the DNN feature maps for the encoding perfor-
mance per site, we iteratively sampled random subsets of pix-
els (Fig. 1b) where each sampled pixel is weighted by 1 while
the other pixels are weighted by 0. For each random sample,
we obtain an encoding score (using the fitted regression of
the default model) on the training set which we assign back to
each pixel included in the sample. After many iterations, we
average the assigned scores per pixel, yielding an importance
map for each site, which we use as spatial weights, and fit a
final regression using these spatial weights.

Gaussian model As a control model, we used isotropic 2D
Gaussians as spatial weights. The best fitting (yielding the
highest encoding score on training images) parameters (x, y,
σ) per site are identified via a grid search on the training set.

Receptive field mapping To estimate the pRF parameters
for our sampling method, we performed a grid search over
the x, y, and σ parameters of an isotropic 2D Gaussian for
each site, such that the resulting Gaussian had the maximum
correlation with the importance map of that site.

Results
Unconstrained pRFs improve encoding performance
We find that our random sampling method is able to identify
locations in the feature maps (as a proxy for the visual field)
that contribute more strongly to the encoding model perfor-
mance compared to other locations. When using the resulting
pRF estimates as spatial weights, our method outperforms the
default model (using no spatial sampling) and the Gaussian
model (using two-dimensional Gaussians as spatial weights)
(see Fig. 2a). Both the Gaussian and the sampling models im-

prove over the default model for sites in V1. However, for V4
and IT, the Gaussian model performs worse than the default,
and the sampling model improves over both.

Gaussian models overestimate pRF sizes The pRF pa-
rameter estimation by the Gaussian control model systemat-
ically overestimates the size of the pRFs compared to using
our sampling method (see Fig. 2c). The resulting sampled
pRF sizes increase along the ventral hierarchy (see Fig. 2d).

Discussion
We show that dropping the assumption that pRFs have an
isotropic Gaussian shape and instead sampling the pRF im-
proves encoding performance drastically when predicting neu-
ral responses to natural images in macaque visual cortex. De-
spite not assuming a Gaussian geometry, our method still al-
lows to estimate the parameters of conventional pRF models.
Crucially, without changes to the sampling procedure, the pa-
rameters of any given pRF model (e.g. CSS, Kay et al., 2013)
can be estimated on the sampled pRFs.

The spatial resolution of the pRF mapping for models us-
ing DNN features (St-Yves & Naselaris, 2018; Bashivan et al.,
2019, e.g.) is limited by the DNN input size and the convolu-
tions applied in the DNN. However, we note that our method
can be adapted to sample pixels directly in the input image,
which removes the resolution constraints of the convolutions.

Overall, unconstrained pRF estimation using DNN feature
maps improves neural prediction performance in macaque vi-
sual cortex. The resulting pRF estimates further allow for fast
and flexible parameter estimation of any given pRF model.
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