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Abstract
Dementia poses a significant and escalating public health
challenge, necessitating effective preventative strategies.
Age-related sleep disturbances, particularly loss of slow-
wave sleep (SWS), are linked to an increased risk of de-
mentia. This study employs a two-stage approach to de-
velop a biomarker of cognitive decline from sleep pa-
rameters using machine learning and investigate a non-
pharmacological intervention in adults aged 50 and older.
We evaluate the efficacy of home-based closed-loop au-
ditory stimulation (CLAS), which enhances slow oscilla-
tions using synchronized auditory cues delivered using
wearable EEG technology. We aim to assess the poten-
tial of CLAS, through improved sleep quality, to delay the
onset of cognitive impairment, potentially offering a scal-
able intervention for dementia prevention.
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Introduction
Dementia represents a heterogeneous group of conditions
marked by cognitive impairments, with Alzheimer’s disease
identified as the predominant etiological factor (Livingston et
al., 2024). Around the world, it is estimated that 57 million
people are living with dementia, a number projected to in-
crease to 150 million by the year 2050 (World Health Orga-
nization (WHO), 2025; Nichols et al., 2022). Currently, there
is no cure; however, there are ways to slow the progress of
cognitive decline, and improve the quality of life of those liv-
ing with dementia (World Health Organization (WHO), 2019;
Herrup, 2021). The largest known risk factor is age. One
of the key elements of a dementia diagnosis is impairment
of daily functioning (Livingston et al., 2024). When a person
experiences symptoms, such as memory loss, but the full di-
agnosis criteria are not met, one can be diagnosed with mild
cognitive impairment (MCI) (Petersen & Negash, 2008). Five
years after an MCI diagnosis, dementia is several times more
likely to occur (Tuokko et al., 2003). This period is crucial
for early identification to make the prevention of future decline
possible. Previously, MCI was often detected using question-
naires such as the Montreal Cognitive Assessment (MoCA)
by Nasreddine et al. (2005), but recently is more accurately
predicted with ACE-III test by Hsieh, Schubert, Hoon, Mioshi,
and Hodges (2013). It is also possible to use EEG to inde-
pendently assess the severity of impairment (Rutkowski et al.,

2023; Wijaya, Setiawan, Ahmad, Zakaria, & Othman, 2023).
This study proposes a two-stage methodological framework.
Initially, machine-learning algorithms will be employed to iden-
tify correlations between sleep stage pattern sequences ex-
tracted from four-channel overnight electroencephalography
(EEG) recordings conducted within a controlled university
sleep laboratory, and cognitive function evaluated by the ACE-
III test (Hsieh et al., 2013). Cognitive function will first be di-
rectly measured (e.g., via neuropsychological tests), then in-
ferred from sleep EEG features after machine-learning model
development. Subsequently, these findings will be translated
to a home-based setting utilizing wearable EEG devices. This
approach will facilitate the application of closed-loop auditory
stimulation for personalized sleep intervention.

Sleep and dementia: Optimal sleep duration is essential for
cognitive function, with both insufficient and excessive sleep
associated with adverse effects on brain health. Specifically,
studies have demonstrated a bimodal relationship between
sleep duration and dementia risk, wherein both sleep dura-
tions below six hours and exceeding ten hours are implicated
as significant risk factors (Sabia et al., 2021; Xu, Tan, Zou,
Cao, & Tan, 2020). Epidemiological studies have established
an association between sleep disorders, such as insomnia
and sleep-disordered breathing, and an increased risk of de-
mentia (Shi et al., 2018). A critical component of restorative
sleep, slow-wave sleep (SWS), defined by slow wave activity
(SWA) below 4 Hz and corresponding to the N3 stage, has
been identified as a key factor in this relationship. Specifically,
the loss of SWS correlates with a heightened risk of demen-
tia (Himali et al., 2023). Mechanistically, SWS is thought to
facilitate the clearance of β−amyloid from the brain (Xie et
al., 2013), and its disruption can lead to rapid β−amyloid ac-
cumulation (Ju et al., 2017). Moreover, genetic factors, such
as the APOE ε4 allele, which predisposes to Alzheimer’s dis-
ease, have been shown to influence SWS levels, potentially
explaining, at least in part, the observed link between SWS
and dementia (Himali et al., 2023). Old age is associated with
a deterioration in both quantity and quality of sleep, and this
is reflected in an increased number of awakenings and a de-
crease in SWS and REM (Edwards et al., 2010). These find-
ings suggest that EEG sleep data could serve as a biomarker
of dementia severity, which has been previously demonstrated
(Ye et al., 2023). SWS also plays a crucial role in memory con-
solidation through hippocampal reactivation, which leads to
strengthening of neocortical representations (Walker, 2009).



To mitigate the risk of cognitive decline, it is important to ad-
dress sleep disorders and get enough rest (Lam, Kong, & Nai-
smith, 2024). With new methods, it is also now possible to
increase the amount of SWS with a targeted intervention both
in a healthy population (Diep et al., 2020) and in patients with
Alzheimer’s disease (Van den Bulcke et al., 2023).

Closed-loop auditory stimulation: Closed-loop auditory
stimulation (CLAS) facilitates the modulation of neural oscil-
lations by delivering auditory stimuli synchronized with spe-
cific phases of brain waves. This technique enables the tar-
geted enhancement of slow oscillations (SOs) during sleep
through the real-time detection of SO peaks and the sub-
sequent presentation of temporally coupled auditory stim-
uli (Ngo, Martinetz, Born, & Mölle, 2013). The efficacy of
SO entrainment via CLAS is critically dependent on the pre-
cise temporal alignment of auditory stimuli with the detected
SO peaks (Navarrete et al., 2020). Jourde, Merlo, Brooks,
Rowe, and Coffey (2024) employed magnetoencephalography
(MEG) to localize the origin of slow oscillations (SOs) elicited
by closed-loop acoustic stimulation (CLAS), identifying the or-
bitofrontal cortex as the primary source. The propagation of
SOs from this region, and the predictive power of its phase
state for CLAS efficacy, validate the use of frontal electrode
synchronization. Nevertheless, the reported discrepancy be-
tween EEG-derived phase and local up states underscores
the need for improved stimulation timing. This may require ei-
ther more precise localization of relevant neural activity or the
development of alternative neurophysiological markers.

Machine learning (ML) techniques offer the potential to
identify individualized signatures within brain signals. This
capability has been applied to phase estimation in CLAS
systems (Lu et al., 2023) and, more recently, to demen-
tia onset prediction through the implementation of signa-
ture path and Riemannian geometry classification (Rutkowski,
2025). Optimal stimulation efficacy requires accurate real-
time sleep stage classification to specifically target the N3
stage. This can be accomplished using automated real-time
algorithms (Patanaik, Ong, Gooley, Ancoli-Israel, & Chee,
2018), or by employing advanced techniques such as signa-
ture path analysis, which we propose to implement, drawing
inspiration from the work of Rutkowski (2025). The second
stage of this study aims to evaluate the feasibility and efficacy
of home-based CLAS for sleep intervention, utilizing wearable
EEG, and to develop an application and machine learning al-
gorithm for individualized stimulation.

The subsequent methods section outlines the study design,
participant selection, intervention protocol, and data analysis
procedures employed to assess the impact of this intervention
on sleep and cognitive function.

Methods
This study targets individuals aged 50 years and older. This
age range was selected to capture the heterogeneity in SWS
quantity, which is known to decline with age (Li, Vitiello, &
Gooneratne, 2022), thereby facilitating robust comparative

analysis. This demographic supports the development of an
EEG sleep-based biomarker for the progression from healthy
aging to MCI and dementia. Cognitive function will be as-
sessed using the ACE-III (Hsieh et al., 2013) before enroll-
ment. Following informed consent, obtained under a protocol
approved by the [masked for review] Institutional Ethical Com-
mittee, eligible participants will undergo an initial overnight
polysomnography (PSG) study in a sleep laboratory (Rundo
& Downey III, 2019). This study incorporates closed-loop au-
ditory stimulation (CLAS), as detailed below. This PSG ses-
sion will diagnose potential sleep disorders, predict cognitive
decline or mild cognitive impairment (MCI) using a machine
learning (ML) model, and establish a baseline for comparison
with home-based electroencephalography (EEG) recordings,
all of which may influence dementia risk. Following the PSG,
participants receive a wearable EEG headband and instruc-
tions on its use at home, along with a corresponding applica-
tion, for two consecutive nights. Daily morning questionnaires
are administered to assess subjective sleep quality. One of
the two nights is randomly assigned as a control condition,
employing sham stimulation.

ML models will be employed to predict ACE-III scores
based on measured sleep characteristics, including sleep
stage distribution, sleep and REM latencies, wake after sleep
onset, and slow-wave sleep (SWS) quantity. These predicted
ACE-III scores, correlated with sleep parameters, will inform
the individualized planning of CLAS delivery. We hypothe-
size that EEG sleep data can serve as a predictive biomarker
for dementia, as reflected in estimated ACE-III scores, and
subsequently guide personalized CLAS intervention proto-
cols. We plan to leverage pretrained models (e.g., those from
iEEG) to learn robust representations, offering a computation-
ally lightweight alternative to end-to-end methods while po-
tentially achieving comparable or superior decoding perfor-
mance (Chau et al., 2024).

CLAS will deliver 50 ms pink noise bursts (55 dB) syn-
chronized with the up-phase of slow waves (0.5 ∼ 4 Hz,
> 40µV), detected online from the FPz electrode during N3
sleep. To avoid awakening, stimulation is withheld when
arousal is detected. Real-time slow wave estimation, employ-
ing a 30−second window with a minimum of five slow waves,
adjusts stimulation frequency to match endogenous activity,
with a hardware delay compensation. Sham stimulation, used
during the control night, will be delivered out-of-phase and
at 1.5 times the endogenous frequency. Individual hearing
thresholds will be accounted for in sound level calibration.

Conclusions
This study proposes home-based Closed-Loop Acoustic Stim-
ulation (CLAS) to improve sleep in at-risk older adults, aim-
ing to optimize personalized sleep interventions and advance
EEG biomarkers for dementia progression. We hypothesize
this tailored approach offers a scalable mitigation strategy for
the global dementia burden, with long-term impacts to be as-
sessed longitudinally.
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