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Abstract
Deep predictive models have recently shown great poten-
tial to create digital twins to predict neuronal activity in
the visual cortex. These models provide per-neuron em-
beddings, which have been proposed as a basis to iden-
tify functional cell types. However, so far no clear clus-
ters have been observed in the mouse visual cortex and
the structure of the embedding space is not highly repro-
ducible across independent model fits. To address these
problems, we build upon state-of-the-art predictive net-
works and introduce an explicit inductive bias to enhance
cluster separability. If functional cell types exist, such a
clustering bias should improve model performance and
consistency of clustering. Our approach is based on
training a predictive model and adding an auxiliary loss
function that encourages the per-neuron embeddings to
be distributed according to a t mixture model. We jointly
optimize both neuronal feature embeddings and cluster-
ing parameters. Our approach improves consistency of
clusters and therefore leads to more consistent embed-
ding spaces across models.

Keywords: neuronal response modeling, visual cortex, clus-
tering, cell types

Introduction
Understanding whether neurons form discrete types or lie on a
continuum is a fundamental question in neuroscience (Zeng,
2022). While discrete anatomical and transcriptomic classi-
fications have been proposed (DeFelipe et al., 2013; Ober-
laender et al., 2012; Markram et al., 2015), recent work in the
mouse brain suggests a more continuous organization (Scala
et al., 2019; Weis et al., 2025). Functional types are well es-
tablished in the retina (Baden et al., 2016) but remain unclear
in the visual cortex. Recent deep learning models improve
neural activity prediction (Willeke et al., 2022; Turishcheva,
Fahey, et al., 2024) and provide data-driven representations
of neuronal function via per-neuron embeddings. These em-
beddings have been used in unsupervised clustering to map
the functional organization (Ustyuzhaninov et al., 2022; Tur-
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Figure 1: A: Model architecture: The model consists of
a shared convolutional core outputting a (height × width ×
feature channels K) dimensional feature map and neuron-
specific readouts, each defined by a receptive field position
and a weight vector. We refer to the weight vector as neu-
ronal embedding. The response is computed by taking the
feature at the RF position and applying a dot product with the
weight vector. B: Clustering procedure: We add a loss to
incorporate a clustering bias into the weight vector and update
clustering parameters (centers and scale matrices) using an
EM step of a t mixture model, as shown in Algorithm 1.

ishcheva, Burg, et al., 2024), yet results have been inconclu-
sive: clear clusters rarely emerge, particularly among exci-
tatory neurons in the mouse visual cortex. This raises the
question: Do discrete functional types exist, or is neuronal
diversity more continuous (F. Xie et al., 2025)? Here we ex-
plicitly encourage clustered structure in learned embeddings
to test for functional cell type separability. We treat this as a
form of model-driven hypothesis testing: if distinct types exist,
a clustering bias should improve model performance, embed-
ding structure, and/or cluster consistency. Inspired by Deep
Embedding Clustering (DEC; J. Xie et al., 2016), we propose
a modified loss that promotes clustering of neuronal embed-
dings during training of deep predictive models.

Methods
Predictive model for visual cortex. We extend a state-of-
the-art neural predictive model of neuronal responses to nat-
ural images (Willeke et al., 2022). It consists of a shared con-
volutional core and neuron-specific Gaussian readout (Fig-
ure 1A). The core extracts nonlinear features shared across
neurons (Klindt et al., 2017), while each neuron-specific read-



out selects (x, y) location of the neuron’s receptive field (RF)
and computes the dot product between the neuron’s weight
vector (per-neuron embedding) and the feature map at that
location to obtain the predicted neuronal response (Lurz et
al., 2021).
Clustering loss. We want to cluster the N per-neuron fea-
ture embeddings zi ∈ RK into J distinct clusters to improve
functional cell type separation. To enforce this structure, we
adapt DEC (J. Xie et al., 2016) and introduce a clustering loss
during training, which is the Kullback-Leibler (KL) divergence
KL(Q||P) between the soft cluster assignments Q under a t
mixture model and a sharpened target distribution P.
EM-based cluster updates. We train the mixture of t
model simultaneously with the core and readout of the pre-
dictive model, using Expectation Maximization (EM). We use
the shape-rate form of the t-distribution (McLachlan & Peel,
2000), which represents it as a scale mixture of Gaussians,
whose (latent) scaling factor u follows a Gamma distribution.
We iterate over three steps (Algorithm 1): (1) E-Step: Com-
pute soft cluster assignment probabilities qi j and the expecta-
tion of ui j. (2). M-Step: Update cluster means µ j and (diago-
nal) scale matrices Σ j. (3) Update the parameters of core and
readout via one iteration of stochastic gradient descent.
The probability density of the multivariate t-distribution is:
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where δi j = (zi − µ j)
TΣ
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j (zi − µ j). We fix the degrees of

freedom to ν = 2.1 to ensure the variance is defined (ν > 2),
and use diagonal Σ j to balance flexibility and overfitting.

Algorithm 1 Model Training with clustering loss
Inputs: Degrees of freedom ν, clustering weight β, core
parameters θ, neuronal embeddings (readout) Z
Output: Parameters µ j,Σ j, θ and Z
Pretraining: Train the predictive model by optimizing Lmodel

w.r.t. θ and Z for m epochs
Initialize: Cluster centers µ j with k-means and diagonal
scale matrix Σ j as within-cluster variance
for epoch t = 1 to T do

for minibatch b in dataset do
(1) E-step (Expectation):

1.1 Soft assignments qi j =
ft (zi;µ j ,Σ j ,ν)

∑
J
j′=1 ft (zi;µ j′ ,Σ j′ ,ν)

1.2 Latent scales ui j =
ν+K

ν+(zi−µ j)′Σ
−1
j (zi−µ j)

(2) M-step (Maximization): Update parameters

2.1 Update µ j =
∑

N
i=1 qi jui j zi

∑
N
i=1 qi jui j

2.2 Update Σ j =
∑

N
i=1 qi jui j(zi−µ j)(zi−µ j)

′

∑
N
i=1 qi j

(3) Optimize predictive model parameters
3.1 Minimize L = Lmodel +βKL(Q||P) w.r.t θ,Z

with pi j =
q2

i j/ f j

∑k qik/ fk
and f j = ∑i qi j

return µ,Σ,θ,Z

Cluster initialization and loss. We pretrain the predictive
model for m epochs (pretrain epochs PE) following Willeke et
al. (2022) and Turishcheva, Burg, et al. (2024) before turning
on the KL loss. After pretraining, we initialize cluster centers
µ j with k-means (MacQueen, 1967), and scale matrix Σ j as
the within-cluster variances. We scale the KL term with β to
match the magnitude of the model loss.

Evaluation of embedding consistency. The number of ex-
citatory cell types in mouse visual cortex remains unclear,
with estimates ranging from 20 to 50 (Gouwens et al., 2019;
Ustyuzhaninov et al., 2022) and some studies finding a high
degree of continuous variation (Scala et al., 2019; Weis et
al., 2025). To evaluate clustering structure, we compute the
Adjusted Rand Index (ARI; Hubert & Arabie, 1985) between
model runs for cluster counts between 5 and 60, measuring
how consistently pairs of neurons are grouped across runs.

Training data. The model was trained on SENSORIUM 2022
(Willeke et al., 2022) responses to natural images of seven
mice (54569 neurons total) using behavioral variables as well.

Model evaluation. Following prior work, we assess model
performance using the Pearson correlation between predicted
and observed neuronal responses averaged across neurons
(Vintch et al., 2015; Sinz et al., 2018; Willeke et al., 2022).

Visualization. We visualize embeddings using t-SNE
(Maaten & Hinton, 2008), with perplexity N/100, learning rate
1, and early exaggeration N/10, as in Linderman & Steiner-
berger (2019). We sample 2,000 neurons per mouse from
seven mice, using the same subset across visualizations.

Results

Clustering loss improves consistency without revealing
a clear number of clusters. Our method (Algorithm 1),
achieves higher embedding consistency (ARI) than the base-
line model (Figure 2), matching the previous state of the art
(rotation-equivariant model; Turishcheva, Burg, et al., 2024)
but with better predictive performance. The optimal schedule
is pretraining for 10 epochs before turning on the clustering
loss. To assess the impact of this loss, we varied its weight
β while keeping other factors fixed (e. g., number of clusters,
length of pretraining), tuning only the learning rate per β. Clus-
ter consistency remains stable across β weights (Figure 3E).
However, predictive performance drops as β increases (Fig-
ure 3D), suggesting a rather continuous variation of neuronal
function.

Figure 2: Clustering loss
improves cluster consis-
tency (ARI) across model
fits for different numbers
of clusters depending on
length of pretraining (PE).
Learning rate tuned for
each model. β = 105.
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Figure 3: A t-SNE of baseline model. B-C t-SNE of our model
with 15 clusters (PE = 10). B. Clustering weight β = 105. C.
β = 107. D. Model performance for different β. E. ARI for
different number of clusters and β.

Acknowledgments
This work was supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement number
101041669). Views and opinions expressed are however
those of the authors only and do not necessarily reflect those
of the European Union or the European Research Council Ex-
ecutive Agency. We thanks Rasmus Steinkamp for technical
support.

References
Baden, T., Berens, P., Franke, K., Román Rosón, M., Bethge,

M., & Euler, T. (2016). The functional diversity of retinal
ganglion cells in the mouse. Nature, 529(7586), 345–350.
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