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Introduction
In neuroscience, the functional brain organization can be de-
scribed brain parcellations, gradients or connectivity models.
While each of these methods can be trained on either task-
based or resting-state fMRI, resting-state has become the
dominant approach due to its ease of acquisition and analysis.
However, the brain is fundamentally an organ of behavior, and
characterizing its organization during active cognitive states,
like task performance, may offer more direct insights. While
task-based approaches are well-suited for this, they impose
a risk of biasing the fMRI responses to particular task sets.
Multi-task fMRI paradigms offer a richer sampling of cogni-
tive states and may therefore present a solution. Yet, multi-
task and resting-state approaches have not been systemati-
cally compared in their ability to capture functional brain orga-
nization. This study presents a first systematic comparison
of matched-duration resting-state and multi-task fMRI data
across several preprocessing pipelines and validation metrics.

Methods and Results
We used 20 minutes of resting-state and task-based data
each, acquired from the same seventeen subjects in the Multi-
Domain Task Battery dataset (MDTB, King et al. (2019)). The
multi-task data comprised 17 tasks tapping into cognitive, mo-
tor, perceptual, and social functions. During the resting-state
session, subjects fixated on a fixation cross while letting their
mind wander.

Data were preprocessed using SPM and Freesurfer with
a minimal preprocessing pipeline including motion correc-
tion, registration to structural data, and cortical surface map-
ping. We then applied filtering steps commonly used in the
field to compare their effects on the data (Figure 1). These
were independent component analysis (ICA) based cleaning
and connectivity fingerprinting. For connectivity fingerprint-
ing, we used previously estimated connectivity weight maps
(Nettekoven et al., 2024), consisting of 32 neocortical net-
works. We regressed the 32 group network spatial maps into
each subject’s data, to obtain subject-specific network time
courses and calculated connectivity as the Pearson correla-
tions of each voxel time series with each cortical network time
course. For task data, we additionally calculated connectiv-
ity fingerprints on the residual time series after regressing
out task-related fluctuations. Finally, we estimated beta maps
using a general linear model (GLM) implemented in SPM12.
Neocortical data was averaged within 1442 icosahedrons.
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Figure 1: Schematic of analysis pipeline.

Most parcellation, gradient, or connectivity models depend
only on the spatial covariance matrix, such that we can base
our comparison of methods on this sufficient statistics of the
data. We computed the parcel x parcel covariance matrix for
each subject and each data type. We then quantified the relia-
bility / similarity between two covariance matrices by calculat-
ing the Pearson correlation between their vectorized matrices.

Reliability

We first examined split-half reliability of the covariance matri-
ces, estimated from two halves of the data (10 minutes scan
time each). Although all data types showed some reliability (all
r > 0.55, one-sample t-tests all t16 > 11.67, all Bonferroni-
adjusted p < 2.46 × 10−8), we observed significant differ-
ences between the data types. Connectivity fingerprints cal-
culated on task and rest data showed highest reliability fol-
lowed by the cleaned task and rest time series. Task-related
beta (mean activity) estimates showed lower split-half relia-
bility, reflecting the dramatic data reduction when going from
time series to activity estimates. Raw task and rest time series
had lower reliability (task: 0.52 ± 0.22; rest: 0.55 ± 0.20).

Reliable covariance through measurement noise

While reliable data is necessary for capturing functional brain
organization, it is not sufficient. In fact, high reliability of
the covariance matrices can be due to measurement noise,
such as motion or physiological artifacts. For example su-
perior cerebellar voxels and the directly adjacent inferior oc-
cipital lobe often are correlated because they are physically
close, even though they are separated by the tentorium and
not functionally coupled (Buckner et al., 2011). While there is
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Figure 2: Similarity space of covariance matrices. a First
two dimensions of the similarity space of covariance matrices.
b Correlations of covariance matrices with the same individ-
ual’s new task session.

no good general way to separate the covariance structure in-
duced by measurement noise from those induced by neuronal
processes, we can use the correlation of voxels across the
tentorium as a rough proxy to gauge the degree to which dif-
ferent data types and processing pipelines are susceptible to
these spurious correlations. We therefore calculated the nor-
malized ratio between superior cerebellar and adjacent neo-
cortical voxel correlations and superior cerebellar voxels and
the rest of the neocortex as rnon-adjacent−radjacent

|rnon-adjacent|+|radjacent| . Because we

would expect that spatial adjacent correlations mostly reflect
measurement noise correlations, we expected better methods
to have more positive values. As a ground-truth estimate,
we also estimated the metric using cross-validation, where
the neocortical and cerebellar beta estimates were acquired
in different runs. As expected, we found positive coefficients
for the crossed betas (mean: 0.60 ± 0.46, one-sample t-test
against 0: t16 = 5.47, p = 5.16×10−5). Next, we calculated
internal validity for data from the same runs. We found that
task betas showed the highest coefficients, exceeding all other
data types (mean 0.147 ± 0.142, all t16 > 3.47, all Bonferroni-
adjusted p < 2.52×10−2). This confirmed that despite its rel-
atively low split-half reliability, task betas were least influenced
by proximal noise correlations.

Similarity of task sets to each other
A common concern with using a task-based approach is that
the resulting activity will be biased by the specific task set.
We hypothesized that any bias towards a particular task state
should reduce with the inclusion of more tasks. We randomly
sampled task batteries of 2, 3, 6, 10 and 13 tasks from 17
possible tasks, with 20 minutes scan time each. We then cor-
related the resulting covariance matrices with all other covari-
ance matrices of the same task battery size. As hypothesized,
we found that the similarity between task batteries increased
with task battery size, with similarity plateauing at 10 tasks
sampled (significant difference of 10 tasks to 6, 3, 2 tasks: all
t16 > 2.91, p < 1.02× 10−2, but no significant difference to
13 or 17 tasks: all t16 < 0.30, p > 0.76). The influence of the
specific task set therefore reduced with the number of tasks.

Generalization to novel task set
A good estimate of functional organization should generalize
to a wide variety of brain states. We therefore evaluated the
ability of the covariance matrices derived from different data
types in predicting functional organization in a separate task
session of 9 new tasks with 144 minutes scan time. Again,
we calculated similarity as the Pearson correlation of the vec-
torized covariance matrices. A multi-dimensional scaling plot
shows the first two dimensions of the similarity space of the
covariance matrices (Figure 2a). We observed that filter-
ing the data reduced the distance to the new tasks: cleaned
time series data showed higher similarity with the evaluation
task set than raw time series data numerically. Connectivity
fingerprinted data showed significantly higher similarity than
cleaned time series data (rest: t16 =−7.89, p = 6.65×10−7;
task: t16 =−11.02, p = 7.03×10−9). Task data consistently
captured functional organization better than rest data (rest
vs. task data types: all t16 < −2.53, all Bonferroni-adjusted
p< 2.21×10−2). Finally, task betas captured functional orga-
nization in the evaluation task set best, showing highest sim-
ilarity to the new tasks (all t16 > 3.73, all Bonferroni-adjusted
p < 2.38×10−2).

Discussion
We here show that the data modality (resting-state or task-
based) and filtering choices strongly influences the structure
of the estimated covariance matrix. While covariance matrices
estimated from time series data are very reliable, they are also
biased by measurement noise, leading to a systematic devia-
tion from the covariance structure estimated from a broad task
battery. Covariance structures estimated from task-related ac-
tivation maps depend highly on the specific task, a problem
that is mitigated when including more tasks. Finally, we find
that task betas show a substantial advantage in predicting
functional organization in a separate deep phenotyping ses-
sion of unobserved task states.
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