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Abstract 
Humans and animals have complex social and 
cultural systems that can span large distances and 
times. In North America, Plains Indigenous nations 
practiced reciprocity through Manitokan, effigies 
placed at fixed locations, where leaving surplus 
goods was seen as cooperative acts of resource 
sharing or caching. In multi-agent reinforcement 
learning (MARL), reciprocity has largely been 
defined as an emergent property through tit-for-tat 
policies or reputation scores that establish social 
norms. These perspectives fail to consider the 
temporal structure of rewards or the criticality of 
certain actions necessary for success. We present a 
novel MARL environment to investigate the 
emergence of reciprocal prosocial behaviours in 
reinforcement learning agents. Baseline experiments 
show that agents consistently converged to 
suboptimal policies favoring individual resource 
maximization, despite the potential for improved 
collective outcomes. These findings highlight a 
critical gap in existing MARL methods, suggesting 
the need for new algorithms capable of supporting 
temporal credit assignment in artificial agents. 
 

Keywords: social intelligence; multi-agent 
reinforcement learning; credit assignment; 
episodic memory 

Introduction & Methods 
Humans and animals are capable of exhibiting complex 
collective behaviours across long spatial and temporal 
scales. One such behaviour is reciprocity, or the act of 
giving without an explicit arrangement of immediate or 
future returns, but an expectation that others would do 
the same. This appears in both human cultural practices 
and animal social systems. Reciprocity is evident in 
Plains Indigenous traditions through Manitokan 
(Barkwell, n.d.), isolated effigies provisioned with 
resources such as food, medicine, and tools to benefit 
passing travelers. Leaving unneeded goods at these can 
be perceived as cooperative actions; a reciprocal 
sharing of resources or caching of items (Clayton & 
Dickinson, 1998). Fixed locations are episodic 
memory-efficient and reduce uncertainty when traveling. 
Current MARL perspectives fail to consider the temporal 

structure of rewards or the criticality of certain actions 
necessary for success (Sutton, 1984). 
 
Environment Design  
To investigate the emergence of reciprocal, prosocial 
behaviours in artificial agents, we introduce a novel 
MARL task under development based in MiniGrid 
(Chevalier-Boisvert et al., 2023), in which decentralized 
agents navigate a discrete world partitioned into 
heterogeneous quadrants. Each quadrant contains 
distinct resources (four berry types) and salient visual 
cues. At the center, tree objects represent the 
culturally-inspired Manitokan, a focal area for resource 
sharing. Adjustable parameters allow systematic 
exploration of various configurations, including resource 
availability, density, and grid size (Figure 1). Agents 
operate in a discrete action space that includes turning 
left and right, moving forward, and picking up or 
dropping berries. 
 
Delayed Exponential Reward  
Each agent 𝑖 receives an individual reward at the end of 
each episode based on the number of unique berry 
types collected, 𝑛𝑖. The reward is computed as an 
exponentially increasing function of 𝑛𝑖, and a constant 
step penalty, λ, is applied at every timestep. The optimal 
policy is defined as one that maximizes resource 
diversity while minimizing extraneous movement:  

 
 

(1) 
 
 
Since the rewards are given at the end of an episode, 
agents do not receive a dense signal for facilitating 
another agent’s success to which they need to assign 
credit. This delayed exponential reward promotes 
emergent strategies that favor memory-efficient and 
diverse resource collection, offering a testbed for 
evaluating social and cooperative behaviour under 
decentralized partial observability. 

Results 
Baseline experiments with proximal policy optimization 
(PPO) (Schulman et al., 2017; Yu et al., 2022) indicate 
that agents primarily exploit their local quadrant, 
resulting in suboptimal individual policies with minimal 
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exploration despite the potential for higher collective 
rewards. As shown in Figure 2, Policy loss metrics 
consistently decreased throughout the training, 
indicating improving stability in learned policies. Value 
network losses diminished steadily, reflecting improved 
accuracy in estimating future rewards. Despite these 
training improvements, agents converged to stable yet 
suboptimal policies characterized by selfish resource 
collection strategies rather than engaging in reciprocal 
interactions to enhance collective reward outcomes 
(Figure 3). 
 

 
Figure 1: MARL environments constructed with 
adjustable parameters for grid size, resource 
density, and spatial structure. Each environment 
consists of four quadrants with distinct berry objects 
and central tree objects placed at their intersection. 
Agent and object positions are randomly initialized 
within quadrants at the start of each episode. 
 

We trained four agents in the 30x30 environment 
for 7,000 episodes using the delayed exponential reward 
scheme. The average number of steps during which 
berries were held increased rapidly during early training 
and plateaued after ~3,000 episodes, while the drop rate 
declined steadily to near zero. This behaviour indicates a 
shift from exploratory to conservative strategies where 
agents retain collected resources without sharing them 
at the central Manitokan. The observed suboptimal 
equilibrium highlights an interesting gap within current 
decentralized MARL frameworks.  

 

 
Figure 2: Training dynamics of MAPPO agents. 
Initial cooperative behaviours in early training 
marked by increased berry drop rates and growing 
reward returns across all four agents. Shaded 
regions denote interquartile ranges across 10 seeds. 

 
Figure 3: Behavioural convergence of MAPPO 
agents. Across training, agents increase hoarding 
behaviour (top) and reduce cooperative resource 
dropping (bottom). 

Conclusion & Future Work 
Existing MARL approaches fail to develop 
cooperative trading under natural constraints despite 
the potential for increased collective rewards. Our 
environment and results contribute novel evaluation 
tools and establish benchmarks crucial to overcome 
this gap and advance our understanding of social 
intelligence in both biological and artificial systems. 
Future work may develop a human-controllable 
version of the environment to facilitate parallel 
psychological studies that compare human social 
strategies to those emerging in artificial agents. 
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