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Abstract
Human decision-making in sensorimotor tasks is charac-
terized by perceptual uncertainty, motor variability, prior
beliefs, and the goal of a task, as well as by other factors
like the effort required to act. Distributions and costs in
these tasks are usually assumed to be normally distributed
or of quadratic shape to maintain analytical tractability for
mathematical convenience. However, there are no guar-
antees whether these assumptions correctly represent
the functional relations underlying human behavior. Re-
cent work on inverse decision-making makes it possible
to overcome these limitations while still allowing inference
of behavioral parameters from data with arbitrary cost
functions and sensory encoding. Here, we extended this
approach to a hierarchical model, thereby allowing model
comparison at the task level instead of a per-subject level.
In all data sets, asymmetric cost functions describe human
behavior better than quadratic costs, and in four out of
five cases, the cost function contains explicit effort costs,
contrary to previous investigations.
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Background
Bayesian actor models provide a framework for decision-
making in a multitude of sensorimotor tasks. They incorporate
subjects’ perceptual uncertainty about the world (Kersten et al.,
2004), motor variability in the subjects’ actions (Van Beers et
al., 2004; Trommershäuser et al., 2008), and subjective goals
and costs. Common approaches do not incorporate these
properties but only rely on normal distributions and quadratic
costs for mathematical convenience.

Perceptual components of actor models should have signal-
dependent properties in encoding sensory stimuli as captured
by Weber’s Law (Weber, 1831). This can be implemented in
several ways (Zhou et al., 2024). Some approaches choose log-
arithmic mappings (Stocker & Simoncelli, 2006; Petzschner et
al., 2015), some use efficient coding (Wei & Stocker, 2015), and
others use a generally parameterized mapping (Acerbi et al.,
2014). Human movements exhibit similar signal-dependency,
as their variability scales with their magnitude (Harris & Wolpert,
1998; Todorov & Jordan, 2002).

Commonly used cost functions are quadratic (Sohn & Jaza-
yeri, 2021), which have been shown to be insufficient to for-
malize goals in some tasks (Körding & Wolpert, 2004; Sims,
2015), and do not incorporate effort costs. Yet, the assumed
cost function should incorporate internal, e.g., computational,
costs (Lewis et al., 2014; Lieder & Griffiths, 2020; Gershman et
al., 2015) and external costs like effort exerted on the body of
the actor (Hoppe & Rothkopf, 2016; Straub & Rothkopf, 2022).

Inverse modeling is a general method to infer the parame-
ters that underlie observed behavior (Aitchison et al., 2015;
Rothkopf & Ballard, 2013; Kwon et al., 2020). However, models
accounting for the sensorimotor and cost characteristics de-
scribed above lose their analytical tractability. But the inverse
problem may become solvable by amortizing the inference
(Radev et al., 2020; Govindarajan et al., 2022) or the decision-
making problem, which is amortized with a neural network in
the model we use.

Here, we propose a hierarchical model for inverse decision-
making, allowing inference and model comparison on the task
instead of the subject level.

Method
Our recently proposed method (Straub et al., 2025) overcomes
the above limitations and allows for efficient inference. How-
ever, it only supports analyses on a per-subject level. Here, we
extended it to a hierarchical model, allowing task-level analysis
of the inferred cost functions.

Decision-Making Problem
Subjects receive a sensory measurement m∼ Lognormal(s,σ)
of a physical stimulus s. They need to find the optimal action
a∗, which minimizes the expected cost over a cost function
ℓθ(r,s) parameterized by cost parameters θ:

a∗ = argmin
a

Ep(s |m)

[
Ep(r |a) [ℓθ(r,s)]

]
,

given a motor response r ∼ Lognormal(a∗,σr) and posterior
belief over the stimulus p(s | m) ∝ p(m | s)p(s) inferred from a
prior belief over s ∼ Lognormal(µ0,σ0). See Fig. 1A.

Inverse Decision-Making
The researcher’s goal is to infer parameters θ, σ, σr, µ0,σ0
of each subject given the data D = {ri,si}. We extend the
previous model by adding hyperpriors Π to all inferred param-
eters. This allows us to perform model comparison on the
task rather than the subject level (Fig. 1A). We sample from
the posterior using NUTS (Hoffman et al., 2014) with 5,000
warm-up steps and 15,000 samples. We then perform model
comparison using PSIS-LOO (Vehtari et al., 2024).

Data Sets
We use data from published work involving the perception of a
stimulus and acting based upon this percept. The used data
sets contain behavioral data from bean bag throwing (Willey &
Liu, 2018), force production (Onneweer et al., 2016), time inter-
val reproduction (Birkenbusch et al., 2015), puck sliding (Ne-
upärtl et al., 2020) and bicycling distance reproduction tasks
(Sun et al., 2004) (Fig. 1B). Because all stimuli are magnitude-
like variables, they can be described by a log-normal sensory
encoding. Incomplete subject data was removed.
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Figure 1: A Graphical model from the researcher’s perspective and general problem. See Method section for details. B Example
data for one subject of each task. Dots are observed stimulus-response pairs (ri,si), shaded line and area show mean and
97%-CI of posterior predictive samples. C Model comparison over different cost functions. Lower scores indicate better fits. Best
fitting cost functions are grouped by background color. D Best cost function fit ℓθ for each task. Single lines show the cost functions
of a single subject. E Inferred beliefs s ∼ Lognormal(µ0,σ0) per subject. Shaded regions denote the true stimulus ranges. F Log
probability densities for inferred joint hyperpriors of belief µ0 and cost parameters β and α, respectively. Yellow denotes high,
dark blue denotes low probability. G Log ratio of prior uncertainty σ0 and perceptual uncertainty σ for all subjects per task. Cost
Legend: C=Cost, Q=Quadratic, A=Absolute, Asym=Asymmetric, IG=Inverted Gaussian, α=parameterization of the exponent.

Results
Cost Function
We compare several cost functions including different forms
of asymmetry and explicit motor effort based on prior stud-
ies described above. Model comparison yields each task’s
best fitting cost functions (Fig. 1C). None of the tasks are best
described by quadratic costs. Instead, asymmetric cost func-
tions fit best on all tasks, with most tasks including explicit
effort costs (Fig. 1D). In task PU, we find all β ≈ 1 (Fig. 1F),
which indicates low effort costs, but the results still highlight
the necessity of non-quadratic costs functions with (r− s)α.

Prior Belief
The inferred prior beliefs overlap considerably with the true
stimulus ranges in most tasks (Fig. 1E). Subjects systemati-
cally overestimate the stimulus distribution in task FOR and
have rather uncertain beliefs in task SUN. In general, subjects
rely more on sensory information than on prior beliefs, indi-
cated by log(σ0/σ) > 0 for all tasks (Fig. 1G). Remarkably,
the variability of the log ratio is smallest in task SUN, where
people sensed the stimulus via proprioception in contrast to
the other tasks, which used visual or auditory stimuli.

Identifiability
Generally, we find no identifiability problems. In tasks FOR
and PU, group-level posteriors for β and µ0 are wide, but low
variability on an individual level (Fig. 1F). This can indicate
identifiability issues, which could be resolved by adding levels
of perceptual uncertainty in the experiments (Wei & Hahn,
2024; Straub et al., 2025).

Discussion
We extended an approach that inferred cost functions from
single subjects to a hierarchical model to use data from all sub-
jects in a task. Applied to a collection of sensorimotor tasks,
we find that models require cost functions other than quadratic,
including effort costs, and need to accommodate idiosyncratic
differences to describe human behavioral data. The current
model is limited by a logarithmic encoding of stimuli, which
should be extended to arbitrary sensory encodings. Future
model extensions could include task-level inference with differ-
ent cost functions per subject. Investigations of intra-individual
variability, where the same subjects solve various tasks, can
support this. This data should incorporate multiple levels of
perceptual uncertainty to disambiguate priors and effort costs.
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