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Université de Toulouse, IRIT, Toulouse, France

Leila Reddy
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Abstract

Humans are able to perform tasks that require manipula-
tion of inputs regardless of how these signals were per-
ceived by the brain. This can be achieved thanks to rep-
resentations that are agnostic to the stimulus modality.
Previous work that attempted to localize such modality-
agnostic representations has not yet led to conclusive
results, with different studies proposing varying sets of
candidate regions. These analyses have largely relied
on relatively small-scale fMRI datasets with predefined
sets of stimulus categories. In our work, we leveraged
a new large-scale multimodal fMRI dataset of 6 subjects
watching both diverse images and short text descriptions
of such images to localize modality-agnostic representa-
tions. To this end, we performed a searchlight analysis
with decoders trained by mapping brain activity patterns
to the latent space of pretrained deep neural networks.
We identified regions in which it is possible to decode
both stimulus modalities in a modality-agnostic way (i.e.,
with a single decoder applied to brain responses from im-
ages or text). We found that large areas of the brain con-
tain modality-agnostic representations, particularly in the
left hemisphere. Our study highlights the importance of
naturalistic stimuli and large-scale datasets for insightful
analyses of representations in the human brain.

Introduction

Modality-agnostic patterns are representations that are ab-
stracted away from particularities of specific modalities such
as vision and language. A range of theories have been de-
veloped to explain how and where in the human brain such
abstract representations are created (Baars, 1993; Damasio,
1989; A. Martin, 2016; Barsalou, 2016; Ralph, Jefferies, Pat-
terson, & Rogers, 2017). Previous studies that aimed to local-
ize modality-agnostic patterns did not always agree on the ex-
act location and extent of such regions (Vandenberghe, Price,
Wise, Josephs, & Frackowiak, 1996; Shinkareva, Malave, Ma-
son, Mitchell, & Just, 2011; Devereux, Clarke, Marouchos, &
Tyler, 2013; Fairhall & Caramazza, 2013; Jung, Larsen, &
Walther, 2018). A major limitation of these studies is their
reliance on a predefined set of stimulus categories, which
stands in contrast to the complex stimuli we perceive in our
everyday life.

Here, we analyzed SemReps-8K, a large-scale multimodal
fMRI dataset of 6 subjects each viewing more than 8,000 stim-
uli which are presented separately in one of two modalities, as
images or as descriptive captions (of such images). Based on
this dataset with naturalistic stimuli, we designed a search-
light analysis to localize modality-agnostic regions in the cor-
tex. More specifically, we used modality-agnostic decoders
that are specifically trained to leverage modality-agnostic pat-
terns by exposing them to brain imaging data from two modal-
ities. We require that above-chance decoding of both modali-
ties is possible using such decoders. Additionally, we trained
modality-specific decoders for both modalities and evaluated

them in a cross-decoding setup (testing a vision-trained de-
coder on captions, and vice-versa) to ensure that the patterns
transfer between modalities in both directions.

Despite these strict requirements our method allowed us
to identify a large network of regions with modality-agnostic
patterns in the brain.

Methods

fMRI Experiment and Preprocessing

The experiment involved 6 subjects (2 female, all right-handed
and fluent English speakers). Functional data as well as
anatomical images was acquired using a 3T Philips ACHIEVA
scanner (10 sessions, each with 13-16 runs). During each
run a subject was shown images and captions in random al-
ternation (stimulus presentation: 2.5s; inter-stimulus interval:
1s), and was instructed to press a button whenever the stimu-
lus matched the immediately preceding one (one-back match-
ing task). Images and captions were taken from the COCO
dataset (Lin et al., 2014). As training set, a random subset of
images and another random subset of captions were selected
for each subject. As test set, a shared subset of 140 stim-
uli (70 images and 70 captions) was presented repeatedly to
each subject.1

Preprocessing was performed using SPM 12 (Ashburner et
al., 2014). For each subject, slice time correction and realign-
ment were applied. All functional scans were coregistered to
a manually corrected anatomical scan and afterwards trans-
formed to MNI305 space. In order to obtain beta-values for
each training and test stimulus, a GLM was fit for each sub-
ject. Finally, the data was transformed to surface space. Fur-
ther details on the fMRI experiment and dataset can be found
in the paper accompanying the dataset release (Nikolaus et
al., 2025).

Localizing Modality-Agnostic Patterns

We use modality-specific decoders, trained only on brain
imaging data of a single modality, and modality-agnostic de-
coders trained on brain imaging data from multiple modalities,
and therefore allowing for decoding of stimuli irrespective of
their modality.

Modality-agnostic regions should contain patterns that gen-
eralize between stimulus modalities. Therefore, such regions
should allow for decoding of stimuli in both modalities using
a single modality-agnostic decoder, i.e. the decoding perfor-
mance for images and captions should be above chance. We
additionally added two conditions to control that the represen-
tations directly transfer between the modalities, by training two
modality-specific decoders and evaluating them in a cross-
decoding setup, i.e. we require that their performance in the
modality they were not trained on is also above chance.

1Note that for each stimulus presented to the subject (e.g. an
image), we also have access to the corresponding stimulus in the
other modality (the corresponding caption), allowing us to extract
multimodal stimulus features based on both image and caption.
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Figure 1: Searchlight results for modality-agnostic regions. Maps thresholded for p < 10−4 (corresponding to a TFCE value of
2333). Anatomical regions with highest cluster values are annotated based on the Desikan-Killiany atlas (Desikan et al., 2006).

All decoders were trained by fitting ridge regression models
that take fMRI beta-values as input and predict latent repre-
sentations extracted from a pretrained deep learning model.2

Preliminary experiments using the whole brain data for de-
coding showed that decoders based on multimodal ImageBind
(Girdhar et al., 2023) features leads to the highest decoding
performance (across a large set of tested models), in the sub-
sequent experiments we therefore used these features.

For each vertex, we defined a searchlight with a fixed size
by selecting the 750 closest vertices, corresponding to an
average radius of ∼ 10mm. We trained and evaluated a
modality-agnostic decoder and modality-specific decoders for
both modalities for each searchlight location and each sub-
ject, providing us with 4 pairwise accuracy scores for each
location on the cortex.3 Then we performed t-tests to identify
locations in which the decoding performance is above chance
(acc > 0.5). We aggregated all 4 comparisons by taking the
minimum of the 4 t-values at each location, and performed
TFCE (Smith & Nichols, 2009) to identify modality-agnostic
clusters. To estimate the statistical significance of the result-
ing clusters we performed a permutation test (n = 10K).

Results and Discussion
The results of the searchlight analysis (Figure 1) reveal that
modality-agnostic patterns can be found in a widespread left-
lateralized network across the brain.

All areas with high cluster values confirm findings from pre-
vious studies: The left precuneus (Shinkareva et al., 2011;
Fairhall & Caramazza, 2013; Popham et al., 2021; Handjaras
et al., 2016), posterior cingulate / retrosplenial cortex (Fairhall
& Caramazza, 2013; Handjaras et al., 2016), supramarginal
gyrus (Shinkareva et al., 2011), inferior parietal cortex (Man,
Kaplan, Damasio, & Meyer, 2012; Vandenberghe et al., 1996;
Shinkareva et al., 2011; Devereux et al., 2013; Popham et al.,
2021; Simanova, Hagoort, Oostenveld, & van Gerven, 2014;
Handjaras et al., 2016), superior temporal sulcus (Man et al.,

2The regularization hyperparameter α was optimized using 5-fold
cross validation on the training set.

3In the case of cross-modal decoding (e.g. mapping an image
stimulus into the latent space of a language model), a trial was
counted as correct if the caption corresponding to the image (ac-
cording to the ground-truth in COCO) was closest.

2012), middle and inferior temporal gyrus (Vandenberghe et
al., 1996; Shinkareva et al., 2011; Fairhall & Caramazza,
2013; Devereux et al., 2013; Simanova et al., 2014; Hand-
jaras et al., 2016), fusiform gyrus (Vandenberghe et al., 1996;
Moore & Price, 1999; Bright, Moss, & Tyler, 2004; Shinkareva
et al., 2011; Fairhall & Caramazza, 2013; Simanova et al.,
2014), and parahippocampus (Vandenberghe et al., 1996).
However, previous studies have led to contradicting results
regarding the locality of modality-agnostic regions (they iden-
tified varying subsets of these regions), probably due to the
limited number and artificial nature of stimuli employed. Our
method identified all of the aforementioned regions as regions
with modality-agnostic patterns, highlighting the advantage of
our searchlight method and the large multimodal dataset in
which subjects are viewing photographs of complex natural
scenes and reading full English sentences.

The left-lateralization of our results can be seen as sup-
port for theories that link modality-agnostic representations
to (lexical-) semantic representations (Simmons & Barsalou,
2003; Binder, Desai, Graves, & Conant, 2009; Meschke &
Gallant, 2024). Relatedly, a range of studies that aimed to
identify brain regions linked to semantic/conceptual represen-
tations found evidence for such regions that overlap to a high
degree with the regions identified in our study (Fernandino et
al., 2016; C. B. Martin, Douglas, Newsome, Man, & Barense,
2018; Carota, Nili, Pulvermüller, & Kriegeskorte, 2021; Fer-
nandino, Tong, Conant, Humphries, & Binder, 2022; Tong et
al., 2022).

In the future, we plan to investigate how modality-agnostic
patterns are modulated by attention, by analyzing additional
test data from the same subjects in which they were instructed
to pay attention to only one of the modalities in specific runs.

This abstract is based on a manuscript currently under
review (Nikolaus et al., 2025), a preprint is available at
https://doi.org/10.1101/2025.06.08.658221 .
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