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Abstract
Recent advances in connectome-based modeling of the
fruit fly brain have enabled neural network architec-
tures that mirror the anatomical wiring of the optic lobe
(Marblestone, Wayne, & Kording, 2016). Despite the suc-
cess of supervised approaches in predicting neural activ-
ity and performing optic flow estimation (Lappalainen et
al., 2024), many natural settings lack explicit labels such
as motion vectors. In this work, we propose an unsu-
pervised learning strategy in which the input layer (R1–8)
receives feedback signals to predict future visual inputs
It+∆t without any external label. We show that this ap-
proach partially reproduces ON/OFF direction selectivity
in T4/T5 neurons, a hallmark of the fly visual system.
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Introduction
Connectome-based models of the fruit fly (Drosophila
melanogaster ) brain have garnered interest in computa-
tional neuroscience (Takemura et al., 2015; Shinomiya et
al., 2019). Recent electron microscopy work has recon-
structed synaptic connectivity among numerous cell types,
leading to Connectome-Constrained Deep Mechanistic Net-
works (DMNs) (Lappalainen et al., 2024), which integrate
anatomical knowledge with differentiable neural dynamical
systems. Although supervised motion-vector training can re-
produce aspects of the fly optic lobe, real organisms rarely
have explicit velocity labels. This gap motivates the ques-
tion of whether the connectome alone and unsupervised vi-
sual time-series can yield biologically relevant representations
(Richards, Lillicrap, Beaudoin, ..., & Kording, 2019).

To investigate this, we modify the DMN from (Lappalainen
et al., 2024) by removing external flow labels and focusing
on future-prediction of visual input. Our results show partial
ON/OFF direction selectivity in T4/T5 neurons, yet fail to fully
differentiate subtypes such as T4a vs. T4b, which experimen-
tally prefer orthogonal directions (Maisak & et al., 2013).

Methods
Connectome-Constrained DMN
We build upon the DMN originally proposed by (Lappalainen
et al., 2024), which encodes the connectome of 64 cell types
in the fly visual system. Each neuron follows a leaky integra-
tion model:

τi
dVi

dt
=−(Vi −V0,i)+∑

j
wi j φ(Vj),

where Vi is the membrane potential of neuron i, V0,i is its
resting potential, and φ(·) is a threshold-linear nonlinearity.
The weights wi j reflect the measured number of synapses be-
tween the cell types of neurons i and j, scaled by a learned
unit synapse strength. Each cell type thus shares parameters:
a membrane time constant τi, resting potential V0,i, and a sign
determined by neurotransmitter profiles.

In the original DMN, a decoding sub-network was trained to
output optic flow by minimizing a mean-squared error against
measured flow fields. By contrast, in this work we remove
such external flow labels and modify the loss function to focus
on future frame prediction.

Unsupervised Future-Prediction Objective

Let It be the input image (brightness distribution) at time t,
derived from visual data frames. During forward propagation
in the DMN, the activity in the input layer (R1–8) is given by
It +Bt , where Bt is feedback from higher layers. We define a
loss to predict the future input It+∆t :

L =
1
N ∑

t

∥∥∥(It +Bt)− It+∆t

∥∥∥2
. (1)

Thus, the network must learn internal representations that
reproduce time-shifted versions of the input solely from self-
consistency. We use standard backpropagation through time
(BPTT) with the Adam optimizer.

Training Procedure

Dataset (Sintel). We use short 24 Hz, 19-frame video se-
quences from the MPI-Sintel database. Each sequence is up-
sampled to 50 Hz (40 frames). Additionally, frames are split
vertically and randomly rotated (in 60◦ steps from 0◦ to 300◦)
with a 50% chance of horizontal flipping, thereby enriching the
dataset with diverse spatio-temporal transformations (Lotter,
Kreiman, & Cox, 2017).
Loss Function Setup. In Eq. (1), we set ∆t = 3, so the net-
work predicts the brightness 3 frames ahead. The activity in
R1–8 is defined as (It +Bt), with Bt computed by the DMN’s
recurrent connections.
Hyperparameters. Training is performed for 10,000 epochs
with a batch size of 16. Synaptic strength scale factors and
neuron-specific parameters are randomly initialized; the Adam
optimizer is used with a fixed learning rate (e.g., 10−4).

Training Configuration: MovingEdge Stimuli
To probe direction selectivity post-training,
we employ the MovingEdge dataset from
flyvis.datasets.moving bar.MovingEdge. This dataset
generates ON/OFF edges traveling across the visual field at
angles from 0◦ to 330◦ in 30◦ increments. Each stimulus lasts
2 s (1 s pre-stimulus, 1 s post-stimulus), rendered at 200 Hz.
Bar speed, size, and offset follow flyvis defaults to ensure
stimuli match the biological scale for fly receptive fields.

Results

T4/T5 Neurons Show Partial Direction Selectivity

After training the DMN on the future-prediction task (with-
out motion labels), we tested responses to the MovingEdge
stimuli, focusing on T4 and T5 neurons known for strong
ON/OFF direction selectivity. T4 subtypes (a–d) are typically
ON-selective, and T5 subtypes (a–d) are OFF-selective.
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Figure 1: Example tuning curves for T4/T5 subtypes (a–d) under MovingEdge stimuli. The vertical axis shows the baseline-
corrected mean response, and the horizontal axis shows motion angles in 30◦ increments. The network reproduces coarse
ON/OFF segregation but does not clearly partition T4 subtypes by 90◦ steps, as documented in some experimental studies
(Maisak & et al., 2013).

Membrane potentials were measured from −0.5 s to +1.5 s
around stimulus onset. For each subtype, the condition with
the lowest mean activity (the baseline sample) was subtracted
from other conditions to yield difference curves. Final tuning
curves were generated by averaging these differences over
time and plotting them against stimulus angles.

Figure 1 shows that the model segregates ON versus OFF
responses (T4 for bright edges, T5 for dark). However, the
tuning curves lack the clear 90◦ separation reported exper-
imentally (Maisak & et al., 2013), indicating that the model
only partially replicates the biological direction preference.

Discussion
Our findings demonstrate that an unsupervised future-
prediction scheme enables the DMN to acquire basic ON/OFF
direction selectivity for T4/T5 neurons. This suggests
that connectome constraints combined with time-series self-
consistency can yield rudimentary motion tuning without ex-
plicit motion labels. However, the tuning for T4 and T5 sub-
types lacks the distinct 90◦ separation seen experimentally,
possibly because (1) the predictive loss does not strongly en-
force precise directional axes, (2) random initial conditions
may cause convergence to local optima, and (3) simplified
modeling assumptions (e.g., omission of electrical synapses
or glial effects) might limit fine-scale tuning (Nern, Scheffer,
Schlegel, ..., & Rubin, 2025). Overall, our results highlight
the promise of unsupervised, connectome-based approaches
while underscoring the need for further refinements to cap-

ture the nuanced features of real neural circuits (Richards et
al., 2019).
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