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Abstract 
Extracting structural patterns is essential for 

all humans to make sense of the world - 
particularly so for infants, who must decipher 
language to acquire it. While it has been shown 
that infants can learn both low-level statistical 
regularities and higher-order structures, the 
neural mechanisms supporting these learning 
processes remain underexplored. A recent study 
in adults suggests that a low-level associative 
mechanism may underlie both types of learning. 
In this study, we investigated whether a similar 
mechanism is present in neonates by examining 
their ability to encode network structures in 
auditory sequences during sleep. We passively 
presented them with sequences of tones 
organised in a community network structure 
while recording their brain activity using 
electroencephalography (EEG). The preliminary 
results of our pilot analysis using multivariate 
pattern analysis (MVPA) reveal that we can 
successfully decode the network structure at the 
individual level. Complementary analysis should 
confirm these findings at the group level. This 
study offers insights on the neural mechanisms 
behind complex structure sensitivity, potentially 
bridging our understanding of the learning 
mechanisms at different orders of structure in a 
unified theoretical framework. 
 

Keywords: network; associative learning; EEG; 
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Introduction 

 
Researchers have long been captivated by the 

remarkable efficiency and systematicity with which 
infants acquire language, viewing it as a key case to 
investigate how the human brain uncovers 
regularities across multiple levels of structure 
(Dehaene et al., 2015). Many studies in adults have 
shown that we are sensitive to different orders of 
regularities ranging from local statistics between 
adjacent items to global higher-order regularities such 
as networks for example (Lynn et al., 2020; Stiso et 
al., 2022). However, whether tracking regularities 
across different ranges necessarily involve separate 
brain processes remains an open question, with a 
growing body of research arguing that Bayesian 
models and other statistical frameworks may be 
sufficient to explain higher-order sensitivity (Frank et 
al., 2010). Supporting this view, recent work in adults 
using behavioural and MEG data (Benjamin et al., 
2023, 2024) suggests that a low-level associative 
learning mechanism, consistent with the free energy 

minimization model (FEMM) (Lynn et al., 2020) - 
described as a linear combination of transition 
probabilities across all orders, with an exponential 
decreasing weight associated with higher orders- 
could explain both statistical and network learning.  

Building on this, and knowing that infants learn 
statistical regularities not only between adjacent 
items (Bulf et al., 2011; Saffran et al., 1996), but also 
non-adjacent items (Fló et al., 2019; Fló, Benjamin, et 
al., 2022), we wanted to investigate whether sleeping 
neonates could be sensitive to network structures 
through a similar associative mechanism. 
To do so, we passively presented 40 neonates with 
sequences of tones generated through a structured 
random walk within a two-cluster network, while 
recording their brain activity using EEG. We used 
MVPA to determine whether they successfully 
encode the network’s underlying structure. 
 

Methods 
 

 
Figure 1: Network community paradigm.  

 
Stimuli  
The stimuli are adapted from (Benjamin et al., 2023). 
We generated twelve tones of 50ms duration, 
logarithmically distributed from 300 to 1800 Hz. For 
each participant, the twelve tones were randomly 
assigned to the twelve nodes of a network (figure 1) 
composed of two clusters (communities) of six nodes. 
We created a long sequence of 3840 tones – tones 
being played every 500ms (2Hz)- by performing a 
random walk in this network, resulting in a sequence 
with uniform transition probability (TP) between 
successive tones (all TP = 1/5).  
 
Participants 
3 (out of 40 expected) full-term neonates between 
days 1 and 3, raised in a French speaking 
environment at majority were tested. The participants 
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were recruited on a voluntary basis at the hospital 
maternity ward. The study was approved by the 
regional ethical committee for biomedical research, 
and the parents give their written informed consent for 
the protocol. 
 
EEG Procedure & Recording 
The 128-channel-electroencephalogram (EEG) net 
was placed on the infant head relative to anatomical 
marks, with the infant held by the experiment and 
installed on a cushion in a soundproof and dark room. 
The auditory sequences were displayed for around 
one hour. Artifact rejection was performed on the non-
epoched continuous recording session using APICE 
pipeline (Fló, Gennari, et al., 2022).  
 
Decoding methods 
We performed time-resolved MVPA by training a 
logistic regression decoder on short epochs of 700ms 
([-0.1, 0.6]), divided into windows of 20ms, and 
“micro-averaged” (Gennari et al., 2021; 
Grootswagers et al., 2017). We conducted the 
decoding analysis generalization across time (GAT) 
of the decoder to assess the stability of the mental 
representation. All preliminary results presented here 
were carried out on a single infant. For the 
Riemannian decoding, we used the XDawnCov 
pipeline to compute the covariance estimation of each 
epoch. We projected them on the space tangent to 
the Riemannian manifold, and used this projection 
(instead of the neural data) as input of the logistic 
regression decoder. 
 

Preliminary results (N=1) 
 
First, we verified that we could decode low-level 
features in the neural response at the individual level, 
such as the relative pitch of the tones (high vs low) or 
the identity of the 12 tones (figure 2, left).To examine 
whether the brain encoded the community structure 
as we expect, we then decoded whether the transition 
that just occurred remained within a community 
(Within) or switched between communities (Between) 
(figure 2, right). At the individual level, we found 
above chance decoding scores, suggesting that the 
infant brain is indeed sensitive to the network 
structure. 
 

 
 

Figure 2: Preliminary decoding results on a single 
subject: performance (ROC AUC) on classifying the 

tone identity (left) and within vs between (right). 
 

 
Expected results (N=40) 

 
Decoding network structure 
We will test the sensitivity to the network structure at 
the group level by performing the same decoding 
analysis (within/between) and assess the statistical 
significance of the results. 
To eliminate low-level confounds, for example 
decoding the identity of the tone rather than 
Within/Between community, we will also run the same 
decoding analysis by restricting it to only one of the 
four nodes at the border of the community. Similarly, 
to control for previous tone identity confound, we will 
run the analysis on epochs where the transition 
began with one of these four nodes.  
Finally, because of sleeping patterns in neonates, the 
responses may not be time-locked and therefore may 
not be captured by time-resolved MVPA. To palliate 
this problem, we will also use Riemannian geometry 
classification (Barachant & King, 2017; Simar et al., 
2022) to decode Within/Between transitions.  
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