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Abstract
What is the role of compositional structure in the align-
ment of visual and linguistic brain areas to computational
semantic embeddings? Vision-language models (VLMs)
have shown meaningful alignment to the brain in their
representations of semantic structure, for both images
and text. However, the extent to which these represen-
tations capture compositional structure – i.e. changes in
meaning based on changes to the combinatorial struc-
ture of parts – remains uncertain. Here we leverage
Winoground, a dataset designed to test compositional-
ity in multimodal representations, to compare the com-
positional structure captured by different model embed-
dings, as well as fMRI responses collected as part of a
larger study on multi-modal meaning (with 2760 image
and 2760 semantically equivalent language trials). In con-
trast to VLM embeddings, neural representations in the
brain show a striking absence of compositional process-
ing (chance level performance) when evaluated on the
Winoground benchmark – despite robust semantic en-
coding of individual concepts as measured by voxel ac-
tivity predictions. This is intriguing as distinctions be-
tween stimuli in Winoground are trivial to any English-
speaking human, highlighting the challenge of identifying
the substrates of compositional processing in the brain.
Our targeted dataset and evaluation pipeline lay the foun-
dation for systematic, cross-modal evaluations of com-
positionality in both artificial and biological neural repre-
sentations.
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Introduction
Multimodal semantic embeddings have shown strong per-
formance at vision-language tasks, including image-caption
matching, zero-shot classification, and visual question an-
swering (Radford et al., 2021; Li, Li, Xiong, & Hoi, 2022; Singh
et al., 2022). Moreover, semantic embeddings can also pre-
dict neural responses in high-level visual and language areas
of the brain with unprecedented accuracy (Wang, Kay, Nase-
laris, Tarr, & Wehbe, 2023; Doerig et al., 2022). This has led
some to suggest a meaningful degree of alignment between
the semantic structure in these vectors and semantic repre-
sentations in the brain, in both visual and language areas.

However, besides similarity structure, linguistic meaning
heavily depends on compositionality – the derivation of mean-
ing as a function of individual elements and the way they are
combined (Partee, 2004; Fodor & Lepore, 1992). In natural
language processing, multiple benchmarks have been created
to specifically evaluate the compositionality of multi-modal em-
beddings and vision-language models (VLMs) (Thrush et al.,
2022; Yuksekgonul, Bianchi, Kalluri, Jurafsky, & Zou, 2022).
These typically comprise image-caption pairs that consist of
identical words yet differ in composition (e.g., ’a cup in some
grass’ versus ’some grass in a cup’; Fig. 1A). Generally, these

benchmarks of compositional meaning have found stark per-
formance gaps, where models that perform well on common
semantic benchmark tasks (such as visual question answer-
ing or image-caption matching) often showed a strikingly low
degree of compositionality (Parcalabescu et al., 2021; Yuk-
sekgonul et al., 2022).

Here, we extend this logic to the domain of fMRI, evaluating
the compositionality of multi-voxel semantic representations
and semantic encoding models, in the context of a large-scale
study of visual-linguistic meaning. In this study, participants
are shown a large number of diverse images and, on sep-
arate trials, their corresponding captions (for a total of 2760
image and 2760 sentence trials). The majority of these tri-
als were taken from Visual Genome Dataset (the images that
are also in COCO (Krishna et al., 2017; Lin et al., 2014)) and
are intended to serve as a diverse sampling of the semantic
space. A subset of the trials were extracted from one par-
ticular benchmark of compositionality, Winoground (Thrush et
al., 2022); these pairs contain the same lexical items but cre-
ate different compositional meanings (Fig. 1A). This allows
us to ask 4 questions: 1) How compositional are VLM em-
beddings, commonly used to model meaning in the brain? 2)
How compositional are multi-voxel semantic representations?
3) Is compositional meaning, to the extent present in original
embeddings, picked up by semantic encoding models, or do
these models only rely on bag-of-words meaning? 4) Does the
degree of semantic compositionality differ between semantic
representations in different brain areas, e.g., visual versus lan-
guage areas?

Methods
fMRI data This is part of a large-scale (low-N) fMRI study
on visual and linguistic meaning. Over the course of at least
13 sessions, participants (2 participants fully collected) are
presented at least 2760 image and 2760 sentence trials (4s
each); for each image there is a corresponding 8-word seman-
tically equivalent sentence. Data was collected using a 3T
(Philips Achieva DS) fMRI scanner; preprocessing was per-
formed using fMRIprep (Esteban et al., 2019) and single-trial
fMRI responses were estimated using GLMSingle (Prince et
al., 2022).

Models We compare 4 VLMs: CLIP, a Transformer-based
contrastive model trained to map images and corresponding
captions to a joint space (Radford et al., 2021); NegCLIP, an
extension of CLIP fine-tuned with hard negatives to improve its
compositional capacity (Yuksekgonul et al., 2022); SigLIP an
optimised version of CLIP using a sigmoid loss (Zhai, Mustafa,
Kolesnikov, & Beyer, 2023); and FLAVA (Singh et al., 2022) a
VLM trained on various multi- and unimodal tasks, including
masked language modelling.

Embedding extraction & evaluation To extract model rep-
resentations for each image and caption, we take each
model’s final layer embedding. By design, these embeddings



there is a mug 
in some grass

there is some 
grass in a mug

stimuli

VLM

fMRI

embeddings

activations

im
0

im
1

ca
p 0

ca
p 1

im0

im1
cap0

cap1

im0

im1
cap0

cap1

B) Encoding accuracies

Vision

Language

C) Winoground scoresA) Experimental set-up

Figure 1: A) Two image-caption pairs, close in form yet different in meaning, get turned into vector representations through both a
VLM (embeddings) and fMRI (brain activations). Matching and mismatching image-caption pairs are then compared in similarity
(e.g., im0-cap0 vs. im1-cap1). B) Encoding model performance (cross-validated correlation coefficient) for vision and language
trials of subject-01. C) Bar chart of Winoground accuracy scores across various models and the brain.

exist in a joint image-text space. Therefore, we can evalu-
ate their compositionality by testing whether cosine similarities
between matching image-text pairs are greater than between
their non-matching counterparts, for each set of visio-linguistic
minimal pairs in the Winoground benchmark (Fig. 1A). To ap-
ply the same evaluation pipeline to brain representations, we
first learn a linear transformation to map fMRI activity recorded
from visual and language areas to a joint space. In this joint
space, we can apply an identical procedure to evaluate the
compositionality of activation vectors.

Hence, for each vector representation and each set of
Winoground pairs (e.g. the two images and captions in Fig.
1A), we obtain 4 binary accuracy values: accuracy at match-
ing the correct caption for each image, and the correct image
for each caption.

Results & Discussion
We first assessed whether we could replicate the sensitivity
to higher-level (semantic) features. To this end, we fit voxel-
wise encoding models, predicting fMRI activations based on
final-layer CLIP embeddings. This revealed strong encoding
performance, in both image and language trials (Fig. 1B).

Having established data quality and replicated the sensi-
tivity to semantic features in high-level visual and language
areas, we then evaluated the compositionality of these em-
beddings and neural activation patterns. For the VLM em-
beddings, we observe above-chance accuracies for all mod-
els, but a few differences are worth highlighting. First, despite
its fine-tuning tailored to improving compositional representa-
tions, NegCLIP does not outperform CLIP; instead, composi-
tionality is improved by more general optimizations of the CLIP
pre-training procedure (SigLIP), and somewhat by extending
pre-training to multiple tasks (FLAVA).

We then applied the same test to fMRI activation patterns;
deriving the joint-space fMRI activations from a linear map-
ping between IT and the language network. Strikingly, despite
the apparently high sensitivity to semantics as measured from
voxel-wise encoding models, we do not observe any evidence

for compositional meaning in the joint fMRI embeddings, with
chance-level performance on the Winoground test.

Since the Winoground evaluation is cognitively trivial for any
English-speaking human (e.g. distinguishing ’some grass in a
cup’ from ’a cup in some grass’), this discrepancy provokes
some interesting possibilities. First, it could be that the fMRI
data itself does not adequately capture compositional struc-
ture and instead primarily reflects lexical-semantic content
(Kauf, Tuckute, Levy, Andreas, & Fedorenko, 2024). Secondly,
it could be that compositional structure is lost during the linear
mapping we use to derive joint-space fMRI activations. We
are currently implementing alternative representational trans-
formations and control analyses to evaluate this possibility.
Third, it could be that the exact ROIs we selected are primar-
ily sensitive to the lexical semantics but not the compositional
meaning; we will address this with a searchlight equivalent of
the analysis to evaluate the degree of compositionality across
the brain.

Together, we present a targeted dataset and evaluation
for probing compositional structure in both artificial and neu-
ral representations of meaning. This resource, combining
carefully selected minimal pairs with large-scale whole-brain
fMRI recordings to semantically equivalent visual and linguis-
tic stimuli, enables systematic evaluation of how different rep-
resentational spaces capture the building blocks of meaning.
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