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Abstract
Despite moving our eyes from one location to another,
our perception of the world is stable - an aspect thought
to rely on predictive computations that use efference
copies to predict the upcoming foveal input. Are these
complex computations genetically hard-coded, or can
they emerge from simpler principles? Here we consider
the organism’s limited energy budget as a potential ori-
gin. We expose a recurrent neural network to sequences
of fixation patches and saccadic efference copies, train-
ing the model to minimise energy consumption (preac-
tivation). We show that targeted inhibitory predictive
remapping emerges from this energy efficiency optimiza-
tion alone. As furthermore demonstrated, this compu-
tation relies on the model’s learned ability to re-code
egocentric eye-coordinates into an allocentric (image-
centric) reference frame. Together, our findings suggest
that both allocentric coding and predictive remapping can
emerge from energy efficiency constraints during active
vision, demonstrating how complex neural computations
can arise from simple physical principles.
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Method
Dataset
Natural scenes were sourced from the MS-COCO dataset (Lin
et al., 2015) with human-like fixation sequences generated via
the DeepGaze III model (Kümmerer et al., 2022). Each input
sequence included seven fixations. A training set of 48,236
images was selected with an additional test set of 2,051 im-
ages. For each image, 10 different fixation sequences were
generated. The original greyscaled scenes had a size of 256
× 256 pixels; the fixation crops were selected to be 128 ×
128 pixels.

Model and Training
The model architecture consisted of a fully connected RNN
with two hidden layers (2048 units each) and lateral connec-
tions. Input consisted of 128×128 pixel fixation crops with
corresponding efference copies (∆ x, ∆ y coordinates). Fol-
lowing Ali et al. (2022), input drive was fixed (non-learnable)
to prevent the network from ignoring input to save energy.

The RNN was trained to minimise metabolic energy con-
sumption using mean absolute preactivation as the loss func-
tion (see Fig 1B) where L represents the energy efficiency
loss, N is the number of units, and |preactivationi,t | denotes
the absolute preactivation value of unit i at timestep t.

Results
Energy efficiency drives predictive remapping
Energy-optimized RNNs developed targeted inhibitory predic-
tive remapping, significantly outperforming control conditions

including average crop luminance, location-specific average
crop, previous fixation control, shuffled fixation sequences,
and models without efference copies (all p < .001, see Fig
2A,B). Even with 56% smaller fixation crops reducing adjacent
overlap, networks maintained predictive capabilities above all
controls.

Top-down feedback was learned to be inhibitory (µ = -0.39,
99% CI = [-0.78, -0.09], n = 86142) and spatially specific to
saccadic target locations rather than global inhibition. The
model’s internal drive aligned with ideal inhibition patterns,
showing smooth yet targeted predictions matching expected
visual input at upcoming fixation locations. Performance im-
proved when recent fixations were spatially proximate, indi-
cating spatial memory formation across multiple saccades.

Allocentric coding enables predictive computations
Networks spontaneously learned allocentric coding, achieving
high accuracy in decoding absolute fixation coordinates from
relative efference copy sequences (x-coordinate: R2 = 0.91;
y-coordinate: R2 = 0.93). This transformation from egocentric
to allocentric reference frames occurred without explicit super-
vision, relying on sparse units (approx. 0.5% of units).

Targeted lesioning of allocentric units (n = 20, top 0.5%)
eliminated predictive capabilities. Lesioned networks reverted
to using current rather than predicted visual input for inhibi-
tion. The correlation with ideal inhibition dropped dramatically
(intact: r = .46, p < .001; lesioned: r = .05, p < .001, see
Fig 2E). Instead, lesioned models aligned with current crop
inhibition patterns (r = .58, p < .001, see Fig 2E). Critically, le-
sioned networks could no longer outperform the no-efference-
copy control (p > 0.999, see Fig 2D), demonstrating functional
necessity of allocentric coding for predictive remapping. Ran-
dom lesioning of equivalent units produced no performance
degradation.

Discussion
We demonstrated that sophisticated visual stability mecha-
nisms could emerge from basic energy constraints without
specialized genetic programming. The spontaneous develop-
ment of allocentric coding mirrors spatial navigation research
(Banino et al., 2018), suggesting shared computational princi-
ples between visual exploration and navigation systems. Our
findings extend predictive coding frameworks by showing how
complex spatial transformations arise from simple physical
constraints. This work provides testable neuroscientific pre-
dictions: allocentric coding neurons should disproportionately
impact visual stability, and neural navigation/visual stability
mechanisms should overlap significantly. These results con-
tribute to understanding how fundamental physical constraints
drive sophisticated neural computations, offering a potential
solution to the hard binding problem (Cavanagh et al., 2010)
through energy efficiency rather than complex genetic archi-
tectures.



Figure 1: Minimizing preactivation in response to human-like saccade sequences. (A) Fixation crop sequence generation
using DeepGaze III fixations on MS-COCO images. (B) Model architecture and loss function.
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Figure 2: Inhibitory predictive remapping with allocentric reference frame as a consequence of energy efficiency. (A)
Illustration of the control conditions: training with smaller crops (56 % smaller), training without efference copies, location specific
average crop, average crop, average luminance value, previous fixation crop and testing with shuffled fixation sequences. (B)
Energy efficiency loss in the RNN and control conditions. (C) Example of the RNN’s internal feedback to layer 1 (upper row),
together with the ideal inhibition (bottom row). While smooth, the inhibitory patterns align with the ideal inhibition. (D) Lesioning
allocentric units led to a significant increase in energy consumption. (E) Correlation of matrices for observed and hypothesised
prediction patterns. The lesioned model aligns with the current crop; the intact model aligns with the ideal prediction of the future
input.
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