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Abstract
The perspective of a developing infant offers unique po-
tential when training a neural network. Egocentric video
from a young child can provide ample data for represen-
tation learning in vision and language models, to only
some expense of model performance. It is known that
pre-trained DNNs optimised for object classification are
good models of the ventral visual stream in adults, but
would the same be true prior to the onset of classification
behaviour? Here, we explore whether models trained on
infant views are more predictive of category responses in
infant ventrotemporal cortex (VTC). Using awake fMRI in a
large cohort of 2-month-olds, we find that - unlike adults -
features from neural networks pre-trained on infant head-
cam data are better models of infant VVC.

Introduction
There is a noteable gap in the amount of data needed to train
a modern artificial neural network compared to a child (Frank,
2023; Cusack, Ranzato, & Charvet, 2024). However, recent
work has shown that relatively standard self-supervised mod-
els can learn from headcam data of young children (Orhan,
Gupta, & Lake, 2020), and digital twin studies with newborn
chicks suggest that vision transformers (ViT) don’t necessarily
need large quantities of data to perform well (Pandey, Wood,
& Wood, 2024). Even with headcam recordings from only 1%
of a single toddler’s experience, Vong et al. (2024) report ef-
ficient learning of word-image mappings. The intuition driving
this approach is that infants generate the optimal perspectives
to facilitate their learning (Bambach, Crandall, Smith, & Yu,
2018) as they try to solve the task of attaching words to pre-
verbal categories (Pomiechowska & Gliga, 2019). Studies of
the adult ventral stream have used these kinds of vision mod-
els, typically trained with computer vision datasets like Ima-
geNet. Model predictions of adult visual responses increase
when optimised for classification performance (Yamins et al.,
2014), but is the same true in a human that can’t yet name
the things they see? We predicted that a model trained on
infant-like sensory input would learn features that are more
predictive of visual responses in the developing brain.

Methods
Awake infant fMRI
Awake fMRI was acquired from 112 2-month-old infants as
they viewed images of 12 animate and inanimate categories.
Each of the 12 categories had 3 exemplars, across di-
verse viewpoints. Pictures appeared in pseudo-random or-
der against a black background for 3 s followed by a fixation
cross, with a jittered inter-stimulus interval ranging between
3.5 – 4.5s. To maintain infants’ engagement, images started at
half of their final size and loomed towards them. Images were
shown twice per 5 min functional run, with most infants partici-
pating for 10 min of awake scanning. Scans that were deemed
unusable by the attending researcher were excluded, as well
as scans with >1.5 mm framewise displacement (FWD) (85%

Figure 1: RDMs were obtained from two models and fMRI
responses in infants and adults, using the same set of stim-
uli. CVCL was trained on infant views (Vong et al., 2024)
and CLIP was trained using web-based data (Radford et al.,
2021). Example RDMs are calculated from an aggregated
VVC ROI. Violin plots show across-subject bootstrap distribu-
tions of Spearman’s r between model and ROI RDMs within
each age group. Dashed lines indicate the fMRI noise ceiling.
Horizontal black lines denote significant differences across the
age groups.

of runs at 2-months had median FWD <1.5 mm). Runs with
greater than 50% of rejected scans above 1.5 mm were not
included in analyses. This resulted in a final sample of n=101
infants in the 2-month group (mean CGA=2.46 mo, 37 female).
A dataset of healthy adults (n=17) viewing the same images
was acquired for comparison. The BOLD response to each
image was estimated with a general linear model, censoring
high-motion frames. RDMs were calculated using correlations
of voxelwise betas, across pairs of subjects. ROIs were de-
fined using regions in the Julich atlas (Amunts, Mohlberg, Blu-
dau, & Zilles, 2020) that overlap with domain-specific regions
in VTC (Weiner et al., 2017).



Figure 2: Bootstrap distributions (across subjects) of Spear-
man’s r between pretrained models’ feature embeddings and
VVC of infants and adults. Horizontal bars indicate signifi-
cant differences between brain-model correlations for the in-
fant trained model, CVCL, and standard CLIP. [fMRI noise ceil-
ings infants: 0.705, adults: 0.808].

Deep neural network modelling
Vision models were loaded with pretrained weights made pub-
licly available from CLIP (Radford et al., 2021) and CVCL
(Vong et al., 2024). For details of model training, please
see original work. Briefly, both models were trained on a
multimodal contrastive task, but differed critically in the train-
ing data. CLIP was input with 400 million image text-pairs
from the web, whereas CVCL was trained on 600,000 images
and 37,500 transcriptions from egocentric headcam data of
a single child (Sullivan, Mei, Perfors, Wojcik, & Frank, 2021).
This study focused on the vision encoders. Two ViT-b/32 ar-
chitectures were loaded with the pretrained weights. 512-
dimensional features were extracted from the output layer for
our 36 fMRI stimuli, and pairwise correlations were calculated.
This produced two model RDMs to which we could compare
the brain: one with features driven by infant views, and an-
other learned with typical training data for deep learning.

Representational similarity analysis
Within each age group and ROI, a group mean RDM was cal-
culated using all pairwise combinations of subjects. Bootstrap
distributions (1000 bootstraps across pairs of subjects) were
used to calculate test statistics. To measure the bound on
model performance, the split-half noise ceiling of the fMRI
data was calculated using the Spearman-Brown prophecy
formula (Lage-Castellanos, Valente, Formisano, & De Mar-
tino, 2019). A follow up searchlight analysis was conducted,
using brain and model RDMs calculated using rsatoolbox
(https://github.com/rsagroup/rsatoolbox). Search-
lights of 5 voxel radius were calculated across the visual net-
work (Schaefer et al., 2018) within each individual subject,
and voxels were thresholded to correlations above the 95th
percentile.

Figure 3: Visual network searchlight analysis for infants and
adults. Searchlights were conducted in individual subjects,
and the group average is shown. Searchlight RDMs used
correlation distance as the metric, and Spearman’s r for
model/brain comparisons.

Results
We found that 2-month-old infants had distinct visual repre-
sentations for object categories that were surprisingly mature
(mean correlation of infants to adult group in EVC: 0.788 and
VVC: 0.577). Individual ROIs were correlated to both mod-
els, with adults showing more similarity to the ViT in general
(Fig.1). The exception to this was EVC, where infant repre-
sentations corresponded more to both models. However, EVC
would not be expected to show strong similarity to the output
layer of a DNN (Güçlü & Van Gerven, 2015).

Fig. 2 displays the same brain-model correlations, empha-
sising instead the differences across CVCL and CLIP within a
larger VVC region. We found that features learned by a model
trained on infant views (Vong et al., 2024) were significantly
more predictive of 2-month-old infants’ VVC than a typically
trained model. In adults, the inverse was true: features from
CLIP trained on a standard dataset were more predictive of
adult visual responses. When using these same models in a
searchlight analysis, we recovered clusters of significant vox-
els in infant VVC for only the model trained on infant views,
despite both models selectively predicting voxels in adult VVC.

These findings reveal that training an artificial neural net-
work with infant egocentric views is important for modelling
the infant brain. CVCL’s more developmentally realistic task
resulted in features that are relevant for infant learning. Al-
though standard computer vision models are useful for adult
studies, taking a developmental approach to machine learning
(Smith & Slone, 2017; Zaadnoordijk, Besold, & Cusack, 2022)
may be the way forward for studies of the developing mind.
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