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Abstract1

An influential perspective is that metacognitive judg-2

ments involve forming propositional confidence in a self-3

centered frame of reference, evaluating the plausibility4

of propositions regarding one’s own cognition and men-5

tal states. Here we build on this framework to propose6

that, because metacognition involves the consideration7

of alternative possibilities or hypotheses, it is an instance8

of a more general capacity known as modal cognition.9

By extension, using the Pearl causal hierarchy we distin-10

guish between metacognition targeting conditional, inter-11

ventional, and counterfactual probabilities, each of which12

allows one to make different kinds of inferences about13

one’s own cognition. This view stresses the relevance14

of research on modal cognition for metacognition, high-15

lights underexplored targets of metacognition, and helps16

explain differences between metacognitive phenomena.17

Keywords: metacognition; modal cognition; confidence18

Introduction19

One of the most impressive, intriguing, and adaptive ca-20

pacities of the human mind is metacognition: the introspec-21

tion, evaluation, and control of our own cognition and mental22

states. An emerging perspective is that metacognitive judg-23

ments involve computing the subjective probability of a propo-24

sition from a self-centered reference frame (Fleming, 2024).25

That is, metacognition evaluates the plausibility of proposi-26

tions regarding a self-model of one’s own cognition (i.e., meta-27

representation; Carruthers, 2009; Nelson & Narens, 1990).28

However, this framework is agnostic as to how metacog-29

nitive computations are achieved. Here we develop a novel30

conceptual analysis of metacognition based on the insight that31

evaluating the plausibility of a proposition involves modal cog-32

nition—the consideration of alternative possibilities (Phillips &33

Kratzer, 2024). For example, when rating one’s confidence34

that a stimulus was present, it is pertinent to ask questions35

such as “Would I have seen a stimulus if it were absent?”36

and “Could I perceive the stimulus if it were presented again?”37

(see, e.g., Mazor et al., 2025; Miyamoto et al., 2023). Un-38

der this perspective, metacognition evaluates modal queries39

over a self-model to determine the robustness of proposi-40

tions about one’s own cognition (Figure 1; Woodward, 2006,41

2021). Here we distinguish three kinds of queries relevant to42

metacognition as defined by the Pearl causal hierarchy (PCH;43

Table 1; Bareinboim et al., 2022; Pearl, 2009).44

MI O

ϕ

M̂Î Ô
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Figure 1: A schematic overview of metacognition. The agent
considers a proposition ϕ that describes a cognitive mecha-
nism M producing some output(s) O based on input(s) I. To
determine the robustness of ϕ, the agent interrogates an ap-
proximate self-model M̂ with questions about alternative pos-
sibilities (ϕ′

1 through ϕ′
N ) that inform the robustness of ϕ. The

pointing hand indicates that the agent may intervene on M̂.

The causal hierarchy45

The PCH distinguishes three kinds of information about a sys-46

tem: conditional, interventional, and counterfactual probabili-47

ties (Pearl, 2009). Critically, higher levels are more expressive48

than lower levels; as one climbs the PCH, additional represen-49

tational and computational mechanisms are required (Barein-50

boim et al., 2022). To illustrate the relevance of the PCH for51

metacognition, we consider a signal detection task (Figure 2).52

Following the presence or absence of stimulus (S), the subject53

encodes a signal (X ) which is susceptible to sensory noise (ε).54

Finally, the subject selects an action A by reporting “present”55

(A = 1) whenever X > 0, and “absent” (A =−1) otherwise.56

Associations At the bottom level of the PCH, we can use57

conditional probabilities to identify associations between vari-58

ables within this graph. For example, one can query the59

likelihood that one would report a present stimulus as being60

present, P(A = 1|S = 1). Since A = 1 whenever X > 0, this61

reduces to P(X > 0|S = 1), given by the normal CDF:62

P(A = 1|S = 1) = P(X > 0|S = 1) = 1−Φ(−1)≈ .84

As another example, consider the posterior probability P(S =63

−1|X = −2.5), representing the probability that the stimulus64

is absent given a signal X = −2.5. The posterior can be es-65

timated using Bayes’ rule, which (assuming flat priors over S)66

reduces to computing the relative likelihood of X =−2.5:67

P(S =−1|X =−2.5)

=
p(X =−2.5|S =−1)

p(X =−2.5|S =−1)+ p(X =−2.5|S = 1)
≈ .99



Level Typical Activities Typical Question

3.
Counterfactual

P(YX=x′ = y′ | X = x,Y = y)
Imagining,
Explaining Would I have seen a stimulus if one were present?

2.
Intervention

P(Y = y | do(X = x)) Doing Will I make the same choice under similar circumstances?

1.
Association

P(Y = y | X = x)
Seeing,

Predicting What does my percept tell me about the stimulus?

Table 1: The PCH, adapted from Bareinboim et al. (2022).

Interventions At the next level up in the PCH, we can ask68

whether intervening on a variable would produce an outcome69

(the hand in Figure 1). Under the intervention do(X = x),70

the subject severs causal pathways directed to X , forcing it71

to the value x independent of its usual causes (Figure 2, red72

X’s). Unlike conditional probabilities, interventional probabili-73

ties carry information about causality: since S causes X , the74

intervention do(S = s) changes the distribution of X , while the75

intervention do(X = x) does not affect S. When the causal76

structure is known, interventional probabilities can be esti-77

mated from conditional probabilities by adjusting for confound-78

ing. In particular, interventions on root nodes with no incom-79

ing arrows (e.g., S) reduce to conditional probabilities (e.g.,80

P(A = 1|do(S = 1)) = P(A = 1|S = 1)≈ .84).81

Counterfactuals Finally, at the uppermost level, we can82

use counterfactual probabilities to ask about alternative pasts.83

Consider a trial in which the stimulus is absent (S = −1) and84

the sensory noise is strong (ε = −1.5), resulting in the sen-85

sory signal X = −2.5 and a correct decision A = −1. We86

can ask: would the subject have reported a stimulus if it were87

present (i.e., P(AS=1|X =−2.5,A =−1))?88

Counterfactual probabilities involve three steps. First, given89

the observations X =−2.5 and A =−1, the subject infers the90

unknown variables S and ε as above. Given X = −2.5, the91

stimulus was likely absent with moderate noise, P(S=−1,ε=92

−1.5|X =−2.5,A =−1)≈ .99, but could have been present93

with substantial noise, P(S = 1,ε = −3.5|X = −2.5,A =94

−1) ≈ .01. Second, the subject performs the intervention95

do(S = 1) within each of these possibilities. Finally, they use96

the resulting distribution to predict their counterfactual action:97

P(AS=1 = 1|X =−2.5,A =−1)

= ∑
s,ε

P(AS=1(S = s,ε = ε) = 1)

P(S = s,ε = ε|X =−2.5,A =−1)
= P(AS=1(S =−1,ε =−1.5) = 1)

P(S =−1,ε =−1.5|X =−2.5,A =−1)
+ P(AS=1(S = 1,ε =−3.5) = 1)

P(S = 1,ε =−3.5|X =−2.5,A =−1)
≈ 0(.99)+0(.01) = 0

Notably, this result disagrees with the interventional probability98

P(A= 1|do(S= 1))≈ .84 because, while interventions gener-99

alize over trials, counterfactuals asks about this particular trial.100

Since X = −2.5, whether the stimulus was actually present101

or not, the subject can infer that ε would have been strong102

enough to prevent detection of any present stimulus.103
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Figure 2: A causal graph for signal detection theory. Depend-
ing on the presence of a stimulus S, a signal X is encoded with
noise ε. An action A based on the sign of X reports the detec-
tion of a stimulus. Red X’s depict the intervention do(X = x).

Assessing existing theories104

Existing computational accounts of metacognition lie at the105

bottom of the PCH, since they define metacognition in terms106

of conditional probabilities (e.g., the probability that a deci-107

sion is correct; Hangya et al., 2016; Pouget et al., 2016). But108

there is emerging evidence that metacognition might also in-109

volve interventions and counterfactuals. Though commonly110

formulated using conditional probabilities, choice consistency111

accounts of metacognition suggest that confidence tracks112

whether one would make the same choice if presented with113

the same problem again—a computation best described as an114

interventional probability (Boundy-Singer et al., 2023; Caziot115

& Mamassian, 2021; De Martino et al., 2013; Koriat, 2012).116

For instance, if stimulus presence is correlated with an exter-117

nal cue, computation of self-consistency should de-confound118

the stimulus and cue through intervention. Moreover, a recent119

model of metacognition about absence invokes counterfactu-120

als: here, the agent determines whether they would have per-121

ceived a stimulus that could have been presented (Mazor et122

al., 2025). Unless inferences are the result of interventions123

restricted to the current trial, however, such models do not yet124

exploit the full expressivity of counterfactuals. More broadly,125

developing theories of metacognition within the framework of126

the PCH constitutes a promising avenue for future work.127

Discussion128

Recent accounts construe metacognition as estimating propo-129

sitional confidence within a self-centered frame of reference130

(Fleming, 2024). Here we point out that under such accounts,131

metacognition entails the consideration of alternative possibil-132

ities, a faculty known as modal cognition (Phillips & Kratzer,133

2024). Based on this observation, we suggest that modal134

considerations place computational and representational con-135

straints on metacognition. Beyond the PCH, modal cogni-136

tion is also sensitive to other features, including temporal ori-137

entation and specificity (Addis & Szpunar, 2024), plausibility138

(De Brigard & Parikh, 2019; Miceli et al., 2024; Morales-Torres139

et al., 2025), self-relevance (De Brigard et al., 2015; Khoudary140

et al., 2022), value (Bear et al., 2020; Morris et al., 2021;141

Phillips et al., 2019), controllability (McCloy & Byrne, 2000;142

Roese & Olson, 1995), and action/inaction differences (Byrne143

& McEleney, 2000). By considering metacognition in this144

framework, we aim to explain differences between metacog-145

nitive tasks, highlight understudied varieties of metacognition,146

and guide theory development in metacognition research.147
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