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Abstract 
Recent work on challenging visual conditions has 
highlighted the role of recurrent processing in sup-
porting robust perception. Predictive processing 
frameworks propose that prior knowledge plays a 
role in disambiguating sensory input, potentially re-
ducing the need for recurrence under strong expec-
tations. In an object recognition paradigm, we exam-
ined whether expectations influence neural pro-
cessing of challenging and non-challenging visual in-
put. Using recent adversarial attack techniques, we 
generated a set of perceptually challenging stimuli. 
We then created perceptual expectations for some 
stimuli by presenting them in a predictable order. Pre-
liminary behavioral data suggested that stronger ex-
pectations enhance both the accuracy and speed of 
categorical judgement. We will present MEG data that 
will elucidate how expectations modulate temporal 
signatures linked to recurrent processing. This work 
aims to shed light on how predictive mechanisms 
shape the neural dynamics of robust perception. 
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Background and Motivation 

Recurrent processing has been proposed as a central 
mechanism for robust perception in biological systems 
(Groen et al., 2018; Kar et al., 2019; van Bergen & 
Kriegeskorte, 2020). Core object recognition can often be 
solved by relying solely on an initial feedforward sweep of 
processing from lower to higher brain regions (DiCarlo et 
al., 2012; van Bergen & Kriegeskorte, 2020). However, 
recent work has shown that challenging visual conditions-
-such as occlusion, and degradation--engage additional 
top-down and lateral recurrent computations over time 
(Kar et al., 2019; Rajaei et al., 2019; Seijdel et al., 2021, 
Tang et al., 2018). 
 A theoretical framework that may account for the role 
of recurrent activity is predictive processing (de Lange et 
al., 2018; Friston, 2005; Keller & Mrsic-Flogel, 2018; Rao 
& Ballard, 1999). In brief, it posits that the brain uses top-
down information to generate predictions about external 
causes in the world, which are then compared against in-
coming sensory input enabling fast and robust perception. 
When sensory information is challenging and not easily 
mapped onto a specific cause, expectations might restrict 
the range of possible interpretations. By iteratively testing 
a limited set of expectations to sensory data, biological 
systems could converge on a suitable interpretation 
faster. Recurrent dynamics are thought to play a key role 

in facilitating such an interplay between expectations and 
sensory information by propagating them from higher to 
lower brain regions to disambiguate perception (Gilbert & 
Li, 2013; van Bergen & Kriegeskorte, 2020). This frame-
work suggests that recurrence is dynamically engaged 
based on both the challengingness of visual input and the 
specificity of these predictions. 

To examine whether recurrent processing fulfils the 
role proposed by these predictive theories, we investigate 
whether expectations enhance sensory processing partic-
ularly during the perception of challenging visual input. To 
this end, we complemented a set of non-challenging im-
ages with a set of challenging images by leveraging re-
cent advances in adversarial attack techniques devel-
oped for artificial neural networks (ANNs; Gaziv et al., 
2023). This technique embeds key high-level features 
from another object class into original images to disrupt 
their object recognition performance. Additionally, we ma-
nipulated expectations by varying the transitional proba-
bilities between consecutive images. We are currently as-
sessing the impact of stimulus challengingness and ex-
pectations on human performance using behavioral met-
rics. Next, using magnetoencephalography (MEG), we 
aim to examine the temporal dynamics of image infor-
mation across the cortex, using decoding analysis of ob-
ject identity. 

Materials and Methods 
Challenging images. 
To generate challenging images, we adopted Gaziv et 
al.'s (2023) approach using adversarial image perturba-
tions (Fig. 1A; i.e., small, targeted pixel-level changes de-
signed to disrupt recognition). In their work they showed 
that ANNs trained with adversarial examples during their 
optimization generated perturbations that not only dis-
rupted network performance but also human perception. 

Figure 1: Experimental Design. A: Challenging Image Manip-
ulation. B: Expectation Manipulation. C: Experimental Set-Up 



Our stimulus set consisted of a subset of ImageNet 
(Russakovsky et al., 2015) classes mapped into a custom 
ten basic animal categories (e.g., dog, bear, etc.; Eng-
strom et al., 2019). Challenging mages were generated 
using targeted modulations, modifying an image with fea-
tures of a specific distractor class. We used a pre-trained 
ResNet50 (He et al., 2015) adversarially trained with an 
ℓ2norm pixel budget of 3.0 (i.e., the ℓ2 norm distance be-
tween the original and perturbed image was constrained 
to a maximum of 3.0; Engstrom et al., 2019; Gaziv et al., 
2023). In total, we generated 360 images with varying lev-
els of ℓ2-norm budget: 7.5, and 10.  Unperturbed versions 
of the same image served as non-challenging controls. 
Expectation manipulation. 
We manipulated expectations by controlling the predicta-
bility between consecutive images in a sequence (Fig 
1B). In the structured condition, five animal classes were 
presented in a fixed repeating sequence, creating strong 
expectations about upcoming stimuli. In the random con-
dition, the remaining five classes appeared in random or-
der, such that no order expectations could be formed. 
Previous work has employed similar manipulations, 
showing that humans are able to extract such regularities 
of the environment and use these expectations to en-
hance both the speed and accuracy of recognition (de 
Lange et al., 2018; Schapiro & Turk-Browne, 2015). 

Experimental procedure.  
Participants (n=7) viewed 1800 animal images sequen-
tially. Each image was shown for 500 ms, followed by a 
350–500 ms ISI. On a subset of trials (11% training, 22% 
testing), participants completed a 4AFC task identifying 
the most recent animal as accurately and quickly as pos-
sible. Images were presented in sequence blocks, be-
longing either to the structured or random condition. In 
each sequence block, participants viewed five animal 
classes in either a fixed (structured) or randomized (ran-
dom) order. The specific image exemplars varied through-
out the experiment (Fig. 1C). 

The experiment consisted of a training and a testing 
phase. During training, all images were initially presented 
unperturbed, allowing to learn the transition probabilities. 
As training progressed, half of the images were gradually 
made challenging with increasing levels of perturbation. 
In the testing phase, the task and timing remained identi-
cal. However, all challenging images were presented at a 
perturbation level aiming to achieve a disruption on clas-
sification performance, targeting 75% accuracy at a group 

level. This ensured that challenging stimuli introduced suf-
ficient perceptual ambiguity while remaining identifiable. 
The images used during training differed from those used 
in testing. Class-to-condition assignments, challenging 
image selection, and block order were randomized per 
participant. 

Preliminary Results and Future Directions 

The project is currently in the data collection phase. Thus 
far, only behavioral data has been acquired from a small 
subsample of participants. In line with our expectations, 
preliminary observations suggest a main effect of image 
challengingness, with higher accuracy and faster reaction 
times for clean compared to challenging images. Addition-
ally, stronger expectations appear to show similar trends, 
with greater accuracy and shorter reaction times for struc-
tured versus random sequences. Lastly, a potential inter-
action may be present, suggesting that stronger expecta-
tion may enhance both the accuracy and speed of cate-
gory judgements for both clean and challenging condi-
tions (Fig 2). Given the project’s early stage and the lim-
ited sample, no statistical analyses have been conducted. 

After completing behavioral data collection and exam-
ining whether the effects are still present, we will extend 
the experiment to MEG. Previous operationalizations of 
recurrence focus on the timing and strength of decodable 
information in the brain, with delayed peaks indicating 
greater reliance on recurrent computations (Kar et al., 
2019; Kietzmann et al., 2019). Our MEG analysis will en-
able us to investigate whether expectations enhanced the 
neural processing of challenging information. Specifically, 
we will leverage these signatures of recurrence to quantify 
how prior knowledge modulates these dynamics under 
challenging conditions.  

Altogether, this work aims to advance our under-
standing of how prior expectations interact with challeng-
ing visual input and how recurrent processing may be 
adaptively engaged in the brain. 

Figure 2. Main Results: Behavioral performance across expecta-
tion conditions and image perturbation levels. A: Accuracy. B: RT 
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