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Abstract

Understanding trial-by-trial variability in cognitive strate-
gies during decision-making remains a challenge. We
combine hidden multivariate pattern (HMP) analysis with
a structured state space sequence (S4) model to decode
cognitive operations from EEG data. Applied to a speed-
accuracy trade-off (SAT) task, HMP identified an addi-
tional Confirmation operation in accuracy-focused trials,
but not in speed-focused trials. Our S4 model predicts the
probability of the Confirmation operation occurring at the
trial level. We use this to show that there are speed trials
where the Confirmation operation does occur, and accu-
racy trials where it does not. This operation correlated
with higher accuracy and EMG-indexed changes of mind.
The introduced method offers a new way to detect and
understand cognitive strategies in a data-driven manner.
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Introduction

Cognitive strategies vary during decision-making, but tradi-
tional methods to determine strategies obscure trial-by-trial
differences. Common approaches explain behavior through
fixed homogeneous processes (Dutilh, Wagenmakers, Visser,
& van der Maas, 2011; Ratcliff, Smith, Brown, & McKoon,
2016; Kunkel, Yan, Craigmile, Peruggia, & Van Zandt, 2021).
However, neural data suggests heterogeneity in strategy use
(van Maanen et al., 2011; van Maanen, Portoles, & Borst,
2021). We propose a novel method based on the theory that
the onsets of cognitive operations are embedded in EEG as
localized peaks of activity (Borst & Anderson, 2015; Ander-
son, Zhang, Borst, & Walsh, 2016). We use HMP (Weindel,
van Maanen, & Borst, 2024), to estimate condition-level cog-
nitive operations and per-trial probability distributions for the
onset of each detected cognitive operation. HMP finds the
dominant sequence of cognitive operations per condition, thus
disregarding intra-condition variability. We combine HMP with
an S4 sequence model architecture which is chosen for its
ability to model longer sequences and handle sequential de-
pendencies (Gu, Goel, & Ré, 2022; Gu & Dao, 2024). We
train the model to detect the onset of each cognitive operation
using EEG data and HMP results as labels. The trained model
can be used to detect which cognitive operations were likely
to have occurred at trial level, in turn showing the strategy that
the participant likely followed.

Applied to a SAT task, where participants had to decide
which of two concurrently presented sinusoidal gratings had
higher contrast, while focusing on either speed or accuracy,
our method reveals an additional operation in the accuracy
condition. We use the S4 model’s predictions to determine
the probability of the additional operation, in both accuracy
and speed trials, and link this to behavioral and physiological
outcomes.

Methods
Data & Preprocessing
Reanalyzed EEG and EMG data from 20 participants perform-
ing a SAT task (Weindel, 2021). EEG was preprocessed (1-50
Hz bandpass, ICA artifact removal).

HMP analysis
Detected cognitive operations per condition using HMP
(Weindel et al., 2024) (speed: 3 operations, accuracy: 4 oper-
ations). Labeled operations: Encoding, Decision, Response
(speed); Additionally Confirmation (accuracy).

S4 model
We combine spatial and temporal modeling for EEG se-
quences (see Figure 1 for a visual overview). First, a 1×1×C
(channels) point-wise convolution extracts global spatial fea-
tures, followed by temporal dropout for generalization. Tem-
poral relationships are captured via two convolutional layers
(scales: 3/9 samples, 12/36 ms), with outputs concatenated.
To handle variable trial lengths, we inject a relative positional
encoding, emphasizing relative timing over absolute. Features
pass through 5 Mamba (Gu & Dao, 2024) layers to integrate
spatiotemporal contexts, followed by a classifier. Optimized
using Kullback-Leibler divergence.

Results
Condition Differences
HMP revealed an additional Confirmation operation in accu-
racy trials. S4 predicted infrequent Confirmation in speed tri-
als (see Figure 2 for a visualization of model performance),
where HMP does not.

Behavioral Correlates
Using a generalized linear mixed model analysis revealed that
higher z scored average confirmation probability (ACP) pre-
dicted correct responses (OR = 1.13, p < 0.01), but there
was an interaction between time pressure condition and ACP
value (OR = 1.27, p < 0.001), indicating that this effect was
stronger when speeded responses were required.

EMG Evidence
Speed trials were less likely to contain an additional peak in
EMG activity (OR = 1.34, p < 0.001). However, trials with
high ACP showed a higher likelihood of an additional peak
in EMG activity (OR = 1.32, p < 0.001). There was an in-
teraction between time pressure condition and EMG peaks
(OR = 1.36, p < 0.001). An additional peak in EMG activity
indicates a confirmation of the outcome of the decision pro-
cess, possibly leading to a change of mind (Burle, Possamaı̈,
Vidal, Bonnet, & Hasbroucq, 2002).

Discussion
Our method decodes trial-level cognitive strategies from EEG,
revealing dynamic Confirmation use despite task instructions.
This dynamicity emphasizes the need for models capturing
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Figure 1: The model architecture used, blue indicates data, green indicates processing, yellow indicates output. Spatial fea-
tures are extracted from raw data, after which temporal dropout is applied. Temporal convolution is used to model temporal
relationships at different time scales. Positional encoding is added to the features, which are fed into a Mamba sequence model.
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Figure 2: a) The model (solid lines) predicts HMP probabilities (dashed line) well at single trial-level. b) An aggregate measure
of true peak timing (Y-axis) and predicted peak timing (X-axis), values closer to the diagonal indicate a better prediction.

intra-condition variability. Limitations include estimated nature
of labels; future work could refine ground truth and devise
evaluation metrics for predictions of this nature, as regular

metrics are not usable.
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