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Abstract
Limitations in deep spiking reinforcement learning mod-
els hinder our understanding of how biological systems
learn control policies. We address this by develop-
ing a biologically plausible deep reinforcement learning
agent (TeDFA-δ) that combines spiking neurons with lo-
cal Tempotron learning and global Direct Feedback Align-
ment and Temporal Difference error optimization. Despite
using a suboptimal learning rule, TeDFA-δ outperforms
backpropagation-trained MLPs on cartpole, acrobot, and
dynamic bandit tasks. This improvement stems from tem-
poral integration of states in spiking neurons rather than
the learning algorithm itself, based on ablation studies.
The network develops structured spatiotemporal repre-
sentations where policy and value information coexist,
with optimal performance at intermediate membrane time
constants (τ ≪ T ). Our results demonstrate that biologi-
cal systems may compensate for imperfect credit assign-
ment through temporal dynamics, suggesting neural rep-
resentations outweigh learning rule optimality for control
tasks. This framework enables new studies of biological
learning while advancing neuromorphic computing.
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Introduction
Reinforcement learning (RL) in biological systems involves
trial-and-error learning, where the ventral striatum com-
putes value estimates, the dorsal striatum mediates stimulus-
response associations, and dopaminergic neurons signal re-
ward prediction errors (Kumar, Bordelon, Zavatone-Veth, &
Pehlevan, 2024). While artificial RL algorithms often rely
on rate-coded neurons, biological neurons communicate via
spikes, but deep spiking neural networks (SNNs) remain lim-
ited in solving complex tasks (Kumar, Tan, Libedinsky, Yen,
& Tan, 2022) due to the lack of biologically plausible credit
assignment mechanisms (Neftci, Mostafa, & Zenke, 2019).
Here, we develop a deep SNN with local Tempotron learn-
ing (Shi et al., 2021; Gütig & Sompolinsky, 2006) trained with
a biologically plausible deep learning algorithm: Direct Feed-
back Alignment (DFA) (Nøkland, 2016) modulated by tempo-
ral difference error (Kumar et al., 2024). We demonstrate
that it learns useful representations to solve complex control
tasks, outperforming multi-layered perceptrons (MLPs) trained
via backpropagation. We hypothesize that spiking neurons’
temporal integration compensates for DFA’s noisy error sig-
nals and also helps stabilize online temporal difference error,
enabling efficient learning. We propose this framework as a
basis for understanding how biological systems learn control
faster than artificial ones.

Methodology
Spiking Network Model

We use a multi-layer Tempotron spiking neuron model
(Gütig & Sompolinsky, 2006), where each neuron’s mem-

Figure 1: A The Tempotron actor critic model. The feedback
paths from actor and critic neurons go to hidden layer neurons
via the TeDFA-δ learning rule. B The Tempotron neuron with a
sample trace (top) and the corresponding Tempotron learning
rule (bottom, orange).

brane potential V (t) = ∑i ωiφi(t − ti) integrates postsy-
naptic potentials (PSPs) from incoming spikes φi(t) =
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with time constants τ and τs, and

ti incoming spike times at synapse i. A spike is emitted when
V (t) ≥ Vθ. We extend this to deep networks using Direct
Feedback Alignment (DFA) (Nøkland, 2016; Shi et al., 2021)
through the proposed TempotronDFA (TeDFA) (Overwiening &
Sompolinsky, 2025), where weight updates combine global er-
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k with local temporal activity φ using fixed random
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Policy and Value Learning Error
To learn to estimate value and a suitable policy, we optimize
the Temporal Difference (TD) error following (Kumar et al.,
2024), but replace backpropagation with biologically plausible
feedback:

Fet = Fπeπ
t +Fvev

t = Fπ (g̃t ·δt)+Fv
δt (2)

where g̃t is a normalized one-hot action vector, and Fπ, Fv are
separate fixed random feedback matrices for actor and critic
pathways (Fig. 1A). This enables online credit assignment for
spiking networks through fixed random projections, similar to
dopaminergic pathways in the brain.

Implementation Details
Simulations use time windows (T = 50 ms) matching envi-
ronment dynamics, with τ = 10, τs = τ/3. Input states drive
the first hidden layer via linearly increasing currents V (t) =
∑i ωixi · t, where x is the state value for this environment time
step, while outputs (actions and value) are read from maxi-
mum membrane potentials Vmax per window. All tasks use 2
hidden layers and 128 neurons per hidden layer for all models.
Learning rates were 0.001 for MLP with BP and TeDFA, but a
lower learning rate of 0.0001 was required for MLP with DFA.

Results
Cartpole Task Performance We first evaluate our model
(TeDFA-δ) on the challenging cartpole task, where small pol-



Figure 2: A The Tempotron model learns faster and outper-
forms a perceptron model on the online cartpole task. Shown
are the total rewards averaged over 20 runs with standard de-
viations. TeDFA-δ is the full model with history, Te*DFA-δ is
without state history. B TeDFA-δ total rewards averaged over
10 runs (after 1000 episodes) on cartpole for different values
of τ, with and without history. * denotes significance with MLP
performance (p < 0.05). Shaded areas and error bars are
95% CI.

icy changes can lead to failure and online learning is diffi-
cult due to long trial durations (500 steps). TeDFA-δ achieves
near-perfect performance after 1500 episodes, outperforming
both MLP with backpropagation (BP) and a memory-less vari-
ant (Te*DFA-δ) with membrane potential resets after each step
(Fig. 2A). The 10x faster convergence of both spiking models
suggests temporal integration is crucial - confirmed by the per-
formance drop when using larger time constants (τ ∼ T ) that
make the model behave more like an MLP (Fig. 2B).

Learned Representations Analysis of hidden layer activity
reveals TeDFA-δ develops structured representations where
policy and value information coexist in feature space (Fig. 3).
The model learns circular representations of cartpole states
and prepares future actions through membrane potential his-
tory. Trajectories often begin/end in appropriate subspaces,
suggesting memory of past states enhances performance be-
yond MLP’s capabilities which uses instantaneous state repre-
sentation. PC projection is done into a global spatial autocor-
relation space, so that the distance to the origin is a metric of
explained feature-variance, which is reached after some time
in each world time window (see Fig. 3B).

Generalization to Other Tasks In the acrobot task, TeDFA-
δ matches MLP-BP performance but learns faster (Fig. 4A).
For the 10-armed bandit task, TeDFA-δ shows superior adapt-
ability when reward distributions change every 1000 trials,
maintaining performance while MLP-BP struggles to relearn
(Fig. 4B). The memory-less Te*DFA-δ performs similarly to
MLP, confirming that temporal integration enables more robust
learning across changing conditions.

Figure 3: The Tempotron model learns useful policy and value
representation. A Features for 100 sample inputs before (left)
and after (right) training. B Trajectory of the model for one full
sample episode in cartpole after 100 episodes of training.

Figure 4: A Performances on the acrobot task. B Perfor-
mances on the continuous k-armed bandit task. Averaged
accumulated rewards over 100 runs with each run of 10 it-
erations with different randomly sampled reward probabilities
with 1000 trials per iteration. Shaded areas are 95% CI.

Conclusion
We present a biologically plausible deep spiking model for
online reinforcement learning that, despite DFA’s constraints,
outperforms backpropagation-trained MLPs through temporal
integration and improved representation learning. This sug-
gests biological networks may compensate for weaker local
signals with temporal dynamics, enabling faster and more ef-
ficient learning. The model enables advances in challeng-
ing control tasks and energy-efficient neuromorphic hardware
(T. Wang et al., 2025). Future work will explore additional
tasks, like continuous control and more challenging problems,
and a comparison to other models with history or memory as-
pects. Additionally, we will investigate scaling laws for this and
similar models (K. Wang, Javali, Bortkiewicz, Trzciński, & Ey-
senbach, 2025) and assess biological alignment of learned
representations to make testable predictions for neuromodu-
lators (Kumar, Manoogian, Qian, Pehlevan, & Rhoads, 2025).
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