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Abstract
Cognitive processes, specially those involving higher-
order functions, often unfold with temporal variability.
This complicates the use of time-locked analysis tech-
niques, including standard machine learning-based de-
coding methods. Although existing methods perform well
in tasks with externally timed events, decoding covert
processes -such as imagery or recall- remains difficult
due to uncertainty in the timing of the underlying neu-
ral dynamics. In these cases, task-relevant neural sig-
nals may occur at variable latencies across trials, violat-
ing the temporal alignment assumptions of standard de-
coding models. We introduce the Adaptive Decoding Al-
gorithm (ADA), a nonparametric framework for decoding
under temporal uncertainty. ADA performs two coupled
tasks: (i) it estimates, for each trial, the temporal window
most likely to reflect task-relevant neural activity, and (ii)
it uses this information to decode the trial label. Using
controlled simulations, we show that ADA outperforms
conventional methods that assume fixed temporal struc-
ture. These results demonstrate that explicitly modeling
trial-specific timing can substantially improve decoding
performance in scenarios where the timing of relevant
neural activity is unknown.

Introduction
Inferring cognitive states from neural signals is a core goal
in computational neuroscience. While multivariate decoding
methods have advanced this goal (Haynes & Rees, 2006;
Cichy, Pantazis, & Oliva, 2014; Grootswagers, Wardle, &
Carlson, 2017), most still rely on a critical assumption: that
task-relevant neural processes occur at fixed latencies across
trials. This is particularly limiting in time-resolved modali-
ties such as M/EEG, where trial averaging and time-locking
to stimulus onset are standard practices to improve SNR
(Pfurtscheller & Da Silva, 1999; Grootswagers, Robinson, &
Carlson, 2019). However, these procedures risk conflating
temporally variable components, potentially masking mean-
ingful latency shifts and hindering interpretability (Stokes &
Spaak, 2016; Vidaurre, Myers, Stokes, Nobre, & Woolrich,
2019).

To tackle this open problem, we introduce the Adaptive De-
coding Algorithm (ADA), a nonparametric decoding framework
that explicitly models trial-by-trial variability in the timing of
task-relevant neural activity. ADA takes a two-step approach:
first, identifying when informative neural patterns occur; then,
using this information to classify behavioral or stimulus labels.
Because of the first step, ADA does not assume temporal
alignment across trials, enabling it to capture non-stereotyped
and dynamically timed neural responses.

Problem Formulation

Let X denote the recorded brain activity, Y the associated
stimulus or behavioral labels, and Z the latent neural pro-
cess that generates X and depends on Y. We consider data

from a subject across N trials, where each trial xn ∈ RT×p

is a multichannel time series, and each label yn ∈ {−1,+1}.
Although we focus on binary classification for simplicity, the
method generalizes to multiclass and regression settings. Im-
portantly, Z may not be active at the same time across trials.
The observed signals X reflect not only Z, but also unrelated
activity and noise. These signals oscillate continuously across
multiple frequencies (Buzsaki & Draguhn, 2004).

To capture the variability in Z, we define an (unobserved)
indicator variable I ∈ {0,1}T×N , where Itn = 1 if trial n at time
t reflects that Z is active. For example, during visual pro-
cessing, information typically reaches cortex ∼75 ms post-
stimulus (Thorpe, Fize, & Marlot, 1996), so Itn = 0 for t < 75
ms. Unlike standard decoding approaches, so we do not as-
sume columns in I to be equal across trials.

Our goal is twofold: to decode Y from new trials and to
estimate I, thereby providing a trial-wise readout of when Z is
active.

Algorithm definition
ADA provides a practical approximation to the estimation of
I , and uses this information to guide the decoding. The de-
coding itself builds on a K-nearest neighbors (KNN) classifier
(Fix, 1985), incorporating temporal structure in a nonparamet-
ric framework.

In detail, each trial is divided into W overlapping windows
of length L, forming a matrix D ∈ RWN×Lp, where each row is
a window. A label vector r ∈RWN is constructed by assigning
to each window the label yn of its parent trial.

To represent when Z is active, we define a binary matrix
H ∈ {0,1}N×W , where each row marks the window(s) used
for decoding in that trial. H is thus a temporally-coarser ap-
proximation to I.

ADA applies a weighted KNN classifier at the window level
in a leave-one-trial-out fashion. Each window’s prediction r̂ j
is a weighted average of its K nearest neighbors, based on
cosine similarity. Accuracy is computed as a j = r̂ j · r j, and
the top-scoring window(s) per trial define the estimated matrix
Ĥ.

We then fit a ridge regression model to predict the window-
level accuracies from data features:

β̂ = argmin
β

WN

∑
j=1

(a j −d jβ)
2 +α∥β∥2

2, (1)

where α is a regularization parameter.
In testing, each unseen trial is segmented into W windows.

Each is scored using the estimated β̂. The top κ windows
are selected, and a final prediction is made using the same
weighted KNN rule, restricted to the training windows indexed
by Ĥ. If κ > 1, the predictions can be integrated as:

ŷ = sign
κ

∑
l=1

f (dl ,DĤ,rĤ,K). (2)

where f (dl ,DĤ,rĤ,K) denotes the weighted K-nearest
neighbors prediction for window l. This design enables ADA to



Figure 1: Simulation experiments. a) Trial-wise variability is introduced by sampling effect latencies from a distribution η,
shaped by the dispersion parameter σ. Top: three examples of η; bottom: corresponding samples of s. b) Single-trial and
averaged signals for a representative channel at varying ρ levels. c) Accuracy of ADA (green) and KNN (yellow) as a function of
σ (left), ρ (center), and p0 (right). d) Accuracy as a function of K (left), L (center), and κ (right; ADA only). Defaults: K = 20,
L = 30, κ = 4.

flexibly adapt to trial-specific temporal variability in the neural
process underlying behavior.

In summary, ADA’s main hyperparameters are: K (neigh-
bors), L (window length), and κ (windows per trial for predic-
tion).

Simulation Experiments

We benchmarked ADA against KNN, a baseline that does not
model between-trial temporal variability, using synthetic data
produced with Genephys, a generative model of electrophys-
iological signals (Vidaurre, 2024) that can simulate multiple
stimulus-induced effects. Each dataset included 40 channels,
100 time points per trial, and 200 training/testing trials.

Sensitivity to Signal Properties

We probed the influence of three signal-level parameters:
dispersion σ (between-trial temporal variability; Fig. a), the
signal-to-noise ratio ρ (effect strength; Fig. b), and the number
of task-relevant channels p0 (effect sparsity); see (Vidaurre,
2024) for details on these.

As observed, ADA remained robust across increasing tem-
poral variability, while KNN performance degraded markedly
(Fig. c, left). Both methods improved with higher ρ, but ADA
consistently outperformed KNN across all levels (Fig. c, cen-
ter). As sparsity increased (i.e., lower p0), accuracy declined
for both methods, yet ADA retained a clear performance mar-
gin (Fig. c, right).

Sensitivity to Algorithm Parameters
We then assessed the influence of algorithmic hyperparam-
eters: number of neighbors (K), window length (L), and the
number of windows (κ, specific to ADA). Simulations were run
with fixed σ = 10, ρ = 0.5, and p0 = 20.

ADA performed robustly across a wide range of K, except
at very low values. KNN favored smaller K, likely due to its
internal averaging across windows (Fig. d, left). Accuracy im-
proved with longer windows L, with ADA consistently outper-
forming KNN (L; Fig. d, center). For ADA, increasing κ beyond
one improved robustness, reducing sensitivity to misestima-
tions in H (Fig. d, right).

Conclusion
Unraveling temporal uncertainty is important to study higher-
order cognition. We introduced ADA, a framework that ex-
plicitly models trial-specific variability in the timing of task-
relevant signals. Controlled simulations demonstrated that
ADA outperforms conventional methods when temporal align-
ment cannot be assumed. This underscores the importance
of integrating temporal flexibility into decoding models, partic-
ularly for covert or internally driven processes.



References
Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in

cortical networks. science, 304(5679), 1926–1929.
Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving hu-

man object recognition in space and time. Nature neuro-
science, 17 (3), 455–462.

Fix, E. (1985). Discriminatory analysis: nonparametric dis-
crimination, consistency properties (Vol. 1). USAF school
of Aviation Medicine.

Grootswagers, T., Robinson, A. K., & Carlson, T. A. (2019).
The representational dynamics of visual objects in rapid se-
rial visual processing streams. NeuroImage, 188, 668–679.

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). De-
coding dynamic brain patterns from evoked responses: A
tutorial on multivariate pattern analysis applied to time se-
ries neuroimaging data. Journal of cognitive neuroscience,
29(4), 677–697.

Haynes, J.-D., & Rees, G. (2006). Decoding mental states
from brain activity in humans. Nature reviews neuroscience,
7 (7), 523–534.

Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related
eeg/meg synchronization and desynchronization: basic
principles. Clinical neurophysiology , 110(11), 1842–1857.

Stokes, M., & Spaak, E. (2016). The importance of single-
trial analyses in cognitive neuroscience. Trends in Cognitive
Sciences, 20(7), 483–486.

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing
in the human visual system. nature, 381(6582), 520–522.

Vidaurre, D. (2024). A generative model of electrophysiologi-
cal brain responses to stimulation. Elife, 12, RP87729.

Vidaurre, D., Myers, N. E., Stokes, M., Nobre, A. C., & Wool-
rich, M. W. (2019). Temporally unconstrained decoding
reveals consistent but time-varying stages of stimulus pro-
cessing. Cerebral Cortex , 29(2), 863–874.


