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Abstract 
While impressive in many vision tasks, artificial 
neural networks have proved lacking in the field 
of symbolic shape perception. In this present 
work, we evaluate the ability of Convolutional 
Neural Networks (CNNs) and Vision 
Transformers, with varying sizes and training 
datasets, to recognize and process abstract 
shapes. We compare the models’ internal 
representations to human data collected from an 
outlier detection task on quadrilaterals. We find 
that networks trained on a large amount of data 
achieve human-like representations of the tested 
shapes. 
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Introduction 
The ability to understand and generate abstract shapes 
has been considered a hallmark of human cognition 
(Dehaene et al., 2022; Sablé-Meyer et al., 2021). While 
research on non-human primates and birds has explored 
their capacity for visual processing, there is little evidence 
that these species can recognize, generate, or manipulate 
abstract shapes in a human-like manner (Sablé-Meyer et 
al., 2021; Westphal-Fitch et al., 2012). Even with 
extensive training, such behaviors remain absent in non-
human animals, whereas human children engage with 
abstract figures effortlessly (Saito et al., 2014).  

Building on the language of thought hypothesis 
introduced in The Language of Thought (Fodor, 1975), 
Sablé-Meyer et al. (2022) proposed that abstract shapes 
are represented symbolically in the brain. While the 
symbolic model offers a compelling framework for 
understanding the types of computations the brain might 
perform when processing abstract shapes, the neural 
mechanisms underlying these computations remain 
unclear.  

More recently, (Campbell et al., 2024) showed 
that neural networks with number of parameters in the 
billions seem to possess capabilities to handle abstract 
shapes similar to humans. Our research investigates 
which neural networks can simulate human abstract 
shape recognition by assessing the cognitive plausibility 

of two prominent computer vision architectures: 
Convolutional Neural Networks (CNNs) and Vision 
Transformers (ViTs). By understanding which factors 
allow neural networks to process abstract shapes 
efficiently, we hope to shed light on how humans 
developed this ability. 

Following work done by (Sablé-Meyer et al., 
2024), we investigate the representation of quadrilaterals 
with varying levels of complexity, comparing how these 
shapes are encoded by humans and neural networks.   

Methods 
To compare how neural networks and humans represent 
quadrilaterals, we applied Representational Similarity 
Analysis (RSA) (Kriegeskorte et al., 2008). For the human 
data, we used behavioral results from (Sablé-Meyer et al., 
2024), who constructed a Representational Dissimilarity 
Matrix (RDM) based on success rates and reaction times 
in an outlier detection task (figure 1A). 

To define the RDM of a neural network, we 
measure the dissimilarity between two quadrilaterals 
using the Euclidean distance between their respective 
prototypes. Each prototype represents the average 
activation of that quadrilateral in the embedding space, 
computed across various scales and rotations. We use 
the embeddings at the last layer before classification, as 
it is where correlation with human RDM is higher for most 
networks.  

To investigate which components are essential 
for neural networks to develop human-like abstract shape 
perception, we evaluated vision models with diverse 
characteristics. Specifically, we tested two architectural 
families—Vision Transformers (Dosovitskiy et al., 2021) 
and Convolutional Neural Networks (CNNs)—across 
three training objectives: classification, Dino (Oquab et 
al., 2024), and CLIP (Radford et al., 2021). These models 
also varied in terms of number of parameters and the size 
of their training datasets. Additionally, we assessed the 
correlation with a symbolic model proposed by (Sablé-
Meyer et al., 2021). This model represents quadrilaterals 
using properties such as symmetry and the presence of 
parallel lines, and computes dissimilarity as the L1 
distance between the corresponding property vectors.  

 
 
 
  



Results 
As reported by (Campbell et al., 2024), we also find 
that large neural networks, such as Dino, exhibit 
representations of quadrilaterals that closely 
resemble those of humans (figure 1B). However, it is 
unclear if there exists a single parameter that allows 
for such human-like representations. As shown in 
figure 1C, all models trained on the smallest dataset, 
Imagenet-1k, display low correlation with human 
behavior. Conversely, all but one of the networks 
trained on LAION-2B—the largest dataset—show 
higher correlations than the symbolic model. Still, the 
size of a model is a big confounding factor, as only 
big models are trained on very large datasets, and 
inversely those big models are not trained only on 
smaller datasets.  
 Interestingly, we find that even relatively 
small models, when trained on moderately large 
datasets, can develop representations that align 
closely with human behavior. Meanwhile, some larger 
models trained on substantially bigger datasets fail to 
do so. 
 Overall, model architecture appears to have 
minimal influence on the similarity between neural 
network and human RDMs. Both CNNs and Vision 
Transformers benefit from increases in model size 
and the number of training images, suggesting that 

scaling is a more critical factor than architectural 
differences. 

Discussion 
In this study, we demonstrated that both 
Convolutional Neural Networks and Vision 
Transformers are capable of modeling human-like 
symbolic shape perception. Among the factors 
considered, the size of the training dataset emerged 
as the most influential in determining how closely a 
network's representations align with that of humans. 
 We could have expected ViTs to fare better 
than CNNs, given prior findings that Vision 
Transformers rely more on shape cues than texture, 
aligning more closely with certain characteristics of 
human visual perception. (Naseer et al., 2021; Tuli et 
al., 2021). Overall, these findings align with theories 
suggesting that human intelligence emerged from 
increased information capacity (Cantlon & Piantadosi, 
2024), rather than from the presence of specific 
architectural biases. 

 
 

Figure 1: (A) Example trials in the outlier detection task. (B) Representational Dissimilarity Matrix (RDM) extracted 
from human behavioral data (left), and RDM from Dino’s embeddings (right). (C) Correlations between different model 
RDMs and human behavioral RDM, plotted as a function of the size of the training dataset on a log-scale. Size of the 
dot is proportional to the size of the model, and color indicates the architecture.   
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