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Abstract 
Humans build internal cognitive graphs that encode 
the structural relationships between states, goals, 
and concepts, supporting flexible behaviour. Both 
the hippocampus (HPC) and orbitofrontal cortex 
(OFC) are implicated in cognitive map formation, but 
their distinct roles remain debated. We 
hypothesised that the HC encodes relational 
structure among states (“state–state” associations), 
while the OFC links each state to their goals (“state–
goal” associations). To test this, participants 
performed a structure reversal learning task during 
fMRI, requiring adaptation to changing state 
transitions and goals. Computational modelling 
showed that participants utilised abstract structural 
knowledge for inference, and multivariate analyses 
revealed complementary neural representations: 
the HPC represented the transition structures while 
the OFC encoded goals. A recurrent neural network 
(RNN) trained via meta-reinforcement learning 
(meta-RL) recapitulated these patterns. Disrupting 
the human HPC using transcranial ultrasound 
stimulation (TUS) or lesioning HPC-like units in the 
RNN selectively impaired transition structure 
learning. Together, these results demonstrate 
complementary roles: the HPC constructs the 
foundation of cognitive graphs, while the OFC uses 
them to support goal-directed behaviour. 
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Introduction 
Humans excel at extracting abstract structures from 
experiences. Like animals constructing cognitive maps 
of physical space (Tolman, 1948; O’Keefe, 1978), 
humans extend these representations to organise 
conceptual knowledge, like complex social relations, 
forming cognitive graphs (Behrens et al., 2018; Niv, 
2019). Such cognitive graphs encode the relational 
structure between different states and support flexible 
decisions. Both HPC and OFC are implicated in 
cognitive map representations, but their specific 
contributions remain under debate (Rushworth et al., 
2011; Wilson et al., 2014; Schuck et al, 2016; Schapiro 
et al., 2016; Klein-Flügge et al., 2019, 2022). In rodents, 
HPC is more involved in spatial navigation, while OFC is 
more related to learning goals or outcomes 
(Wikenheiser, & Schoenbaum, 2016), hinting at a 
division of labour that may extend to humans. We 

hypothesised that the HPC and OFC play 
complementary roles in building cognitive graphs: HPC 
primarily encodes relations among states, building the 
foundation of the cognitive graph, while OFC links states 
to goals and uses the graph to guide goal-directed 
behaviour. 

Results 
Experimental task and behavioural results. We 
tested these hypotheses using a Goalkeeper Game with 
fMRI, where participants (N=36) predicted the shooting 
direction from four virtual shooters appearing in a 
probabilistic sequence. In each trial, participants made 
an initial prediction before seeing the shooter, then could 
either persist or change their prediction after the shooter 
appeared. Outcomes provided rewards (+2 correct 
persistence; 0 correct change) or penalties (−2 any 
incorrect prediction), incentivising accurate initial 
predictions. Shooter sequences followed a basic 
transition structure: a four-state Markov chain with two 
frequent (paired; 80%) and two infrequent (rare; 20%) 
transitions. Participants implicitly learned this basic 
structure with three different character sets during Pre-
Game Training. Throughout the main game, participants 
encountered unsignaled reversals: the pair and rare 
transitions were reversed (transition reversal) twice, and 
two shooters swapped goal direction preferences (goal 
reversal) once. Participants successfully adapted, 
persisting with initial predictions significantly more 
during paired than rare transitions, indicating that they 
learned the transition structure and followed an optimal 
strategy They also accurately learned each shooter’s 
goal preference. These results highlight people integrate 
state transitions and goals into cognitive graphs to 
support flexible decision-making. 

Computational modelling of transition learning. 
Participants learned the transitions through history, with 
more recent pair transitions increasing the likelihood of 
optimal behaviour. Critically, they leveraged both direct 
experience (same-pair history) and inference (other-pair 
history) to learn transitions and guide future predictions. 
We formalised these behaviours with computational 
models. Three RL models were implemented: a 
Frequency Model (0), which predicts based on recent 
state (character) frequencies; a Transition Model (1), 
which learns transition probabilities simply through direct 
experience; and a Structure Model, which incorporates 
structural knowledge to utilise both experience and 
structure-based inference for predictions. The Structure 



model provided the best fit for participants’ behaviours 
and was the only model to replicate participants’ use of 
structure-based inferences, outperforming the other 
simpler models. This indicates that human learners use 
structural knowledge to build cognitive graphs and 
generalise beyond experiences.  

Neural representation in HPC vs OFC. fMRI analyses 
revealed a dissociation between HPC and OFC in 
representing the cognitive graph. Using trial-level 
representational similarity analysis (RSA), we found that 
only HPC consistently represented the transition 
structure across different phases, with no comparable 
effects in other task-relevant regions. Paired characters 
were represented more similarly in the neural space of 
HPC compared to unpaired characters. Moreover, 
HPC’s representation was sensitive to the global 
context—it distinguished between different transition 
structures after reversals, suggesting that it encoded not 
just local transitions but also a higher-level abstract 
structure. In contrast, decoding analyses showed that 
OFC represented the goal direction prediction, and such 
a representation is disentangled from the transition 
knowledge. In short, we identified complementary OFC 
and HPC roles: HPC represents the state-state 
transition structure to construct the foundation of the 
cognitive graph, while OFC links states to goals to use 
the graph to predict goals.  

The causal role of HPC in transition learning using 
TUS neuromodulation. To test the HPC's causal role in 
cognitive graph formation, we modulated its activity 
using transcranial ultrasound stimulation (TUS). A new 
group of participants (N=20) completed two 
counterbalanced sessions, receiving bilateral theta-
burst TUS targeting either HPC or a control white matter 
site after Pre-Game Training on the basic transition 
structure, and then performed the Goalkeeper Game. 
HPC stimulation disrupted participants’ transition 
learning compared to control stimulation. Specifically, it 
impaired the influence of both experience and structure-
based inference, with inference being abolished, 
suggesting a shift from using structural knowledge 
(Model 2) to a simpler experience-based (Model 1) 
strategy. Notably, participants’ goal prediction learning 
from shot history was unaffected. These findings 
demonstrate HPC’s causal role in learning state-state 
transitions to construct cognitive graphs and enable 
flexible behaviour.  

Simulating TUS effects with neural network. We next 
asked whether a similar causal role of structure 
representation in transition learning could be observed 
in an artificial network. We trained an RNN via meta-
reinforcement learning (meta-RL) with the advantage 
actor-critic (A2C) algorithm on a state-prediction, 
following the same transition structure as the 
Goalkeeper Game. After training, the network learned to 
predict upcoming states using both direct experience 
and structural inference, closely paralleling human 
behaviour. Applying RSA to individual hidden units, like 
the human fMRI analysis, we discovered that about half 
of the units developed HPC-like representations of the 
transition structure. Randomly disabling HPC-like units 
during task performance impaired both use of 
experience and structure-based inference in proportion 
to lesion extent, while disabling control units had no 
effect. Strikingly, lesioning 50% of HPC-like units closely 
mimicked the effects of hippocampal TUS in humans, 
highlighting HPC’s critical role in cognitive graph 
construction and offering computational insights into 
neuromodulation mechanisms.  

 
Conclusion 

Using fMRI, RL models, TUS neuromodulation, and 
RNN simulations, we revealed the complementary roles 
of HPC and OFC in representing cognitive graphs: HPC 
encodes state-state transition structure, constructing the 
foundation of cognitive graphs, while OFC uses the 
graph for goal prediction. Disrupting HPC representation 
in either humans or artificial agents impaired structure-
based learning, highlighting HPC’s pivotal role in 
cognitive graph construction and supporting structure-
based inference. 
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