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Abstract: 

In dynamically evolving environments, effective planning 
is crucial for guiding decisions toward optimal goals and 
adjusting them as conditions change. However, the 
underlying neurocognitive mechanisms of planning 
remain elusive, as these processes are not directly 
observable through behavior. Previous studies have 
largely focused on simplified decision-making tasks, 
often limited to static environments or single-goal 
scenarios. Here, we introduce a novel arithmetic 
paradigm that requires multi-step planning and flexible 
goal switching in a dynamic, multi-goal context. Using 
eye tracking data, we estimated the utility of each goal 
and modeled goal switching in real time using a Bayesian 
framework, capturing individual differences in how 
participants integrate new information into decisions. 
High-performing participants were more likely to adjust 
their choices based on updated utilities and engaged in 
forward planning when initial plans became infeasible. 
Moreover, model-derived goal switching probabilities 
reliably predicted activity in brain regions associated 
with reward processing and value-based decision-
making. These findings suggest that adaptive goal 
switching is supported by neurocognitive processes that 
continuously track the evolving utility of multiple goals. 
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Introduction 

Adaptive decision-making is fundamental to higher 
cognitive processes, requiring the continuous updating 
of goals and plans in response to environmental 
changes (Hunt et al., 2021; De Martino et al., 2023). 
However, previous studies have primarily examined the 
formation of single plans within a stable environment 
(Callaway et al., 2022) and pursuit of fixed goals (van 
Opheusden et al., 2023). Moreover, most decision-
making research has focused on planning as an end-to-
end process (Matter et al., 2022; Eluchans et al., 2023), 
often overlooking the moment-by-moment formation 
and updating of plans and decisions (Gordon et al., 2025). 

In this study, we developed a novel arithmetic task 
that requires adaptive decision-making and real-time 
planning. We implemented an eye-tracking-based 
Bayesian model that predicts adaptive goal switching 
from participants’ eye-gaze patterns, allowing us to 
capture shifts in internal utility estimates that occur 
dynamically over time in changing environments.  

We hypothesized that high-performing participants 
would more effectively integrate available information, 
leading to more accurate adaptive goal switching. 
Furthermore, we predicted that fluctuation in model-
estimated goal-switching probabilities would correlate 
with neural activation in the reward- and value-related 
regions, including the medial prefrontal cortex (mPFC), 
anterior cingulate cortex (ACC), nucleus accumbens 
(NAcc), and insular. 

 
Methods 

Task design 

Participants (N=58) performed a novel calculation task 
in an fMRI scanner. On each trial, they selected three 
numbers and two operators from items on the screen to 
formulate valid equations that matched one of two 
predefined target numbers (Fig. 1). Each trial was 
divided into two stages: planning and execution. During 
the planning stage, participants were given 60 seconds 
to generate and report up to three plans. In the 
subsequent execution stage, they selected items 
sequentially to implement their chosen plan. However, 
after each selection, the values of unselected number 
items changed with a probability of 0.35. Following each 
number change, participants were given 4 seconds to 
observe the new state and reported which target 
number they were currently pursuing. The penalty for 
each trial was defined as the difference between the 
selected target at the final step and the output of the 
constructed equation. Overall task performance was 
calculated as the inverse of the cumulative penalty 
across 32 trials.  

Figure 1. Task Design. Participants were presented with seven numbers, five operators, and two target numbers. They reported up to three 
plans to reach one of the targets. During the execution stage comprised five steps, participants could no longer view their previous plans. At 
each step, unselected number items were randomly changed, and participants observed the new items for 4s, followed by 2s to select which 
target to pursue. The penalty for each trial was defined as the difference between the final selected target and the output of their equation. 



Eye-tracking based Bayesian model 

To predict adaptive goal switching, we developed a 
Bayesian inference model using eye movement data 
(N=37) recorded during the task (60Hz video). Before 
each item replacement, the target number selected in 
the previous step was treated as the prior belief (Fig. 
2.A left). The likelihood was derived from the computed 
utility for each target based on participants’ fixations on 
number items (excluding the target number) during the 
observation period (Fig. 2.A. middle). The utility was 
computed as the minimum penalty across all possible 
equations involving each fixated number item—
calculated for each target and its position in the 
equation (2nd or 3rd: Fig. 2.B). The posterior belief was 
defined as updated beliefs after the item replacement 
(Fig. 2.A right). Both prior and posterior beliefs were 
modeled as beta distributions, updated with each 
fixation. We optimized two learning rate parameters (w1, 
w2 in Fig 2.B) for each participant using a grid search 
algorithm. Model performance was assessed using 
leave-one-trial-out cross-validation, evaluating how 
accurately the posterior probability predicted 
participants’ actual switching decisions. 

To examine how participants' real-time goal utility 
computation is represented in brain activity, we 
conducted parametric GLM analysis using the 
probability of selecting an alternative target (switching 
probability) over the 4-second observation period as a 
regressor (Fig. 2.C, P(alternative target)).  

Results 

We focused our analysis on execution step 2, a critical 
decision point where items changed, yet participants 
could still adjust their plans (Fig.1). Task performance 
was significantly correlated with participants switching 
their target only when the utility for the current target 
had been diminished (Fig 3.A, R= 0.28, p=0.046). This 

finding suggests that accurate computation of the 
relative utility associated with each target number is 
essential for adaptive behavior. 

The eye-tracking-based Bayesian model performed 
significantly above chance level, with its accuracy 
positively correlated with participants’ task performance 
(Fig 3.B; R=0.41, p=0.012). Moreover, both learning 
rates used to update the likelihood in the Bayesian 
inference showed significant positive correlations with 
performance (Fig 3.C; left: R=0.50, p=0.002, right; 
R=0.47, p=0.003). Notably, these correlations emerged 
only when participants’ initial plans became invalid due 
to number changes. The positive correlation for the 
learning rate of the number at the 3rd position suggests 
that, when adaptive decision-making was required, 
high-performing participants engaged in strategic 
forward planning, integrating utility information up to the 
final step in the equation to select the optimal target.  

Furthermore, parametric GLM analyses revealed that 
neural activity in mPFC, ACC, NAcc, and insular 
tracked fluctuations in the model-estimated goal-
switching probabilities (Fig 3. D, FDR<0.05). This 
suggests that these brain regions are involved in 
continuously evaluating the need for adaptive goal 
switching based on dynamic utility estimates. These 
individual differences in behavior and neural activity 
were only observed at step 2. 
 

 Conclusion 

We introduced a novel sequential planning and 
decision-making paradigm that provides insight into 
adaptive behavior in dynamic environments. Using an 
eye-tracking-based Bayesian model, we characterized 
goal-switching behavior and found that high-performing 
participants effectively monitored goal utility and flexibly 
adjusted their plans in real time. Neural activation in the 
mPFC, ACC, NAcc, and insula tracked fluctuations in 
model-predicted goal-switching probability, highlighting 
their role in adaptive planning and decision-making. 

Figure 2. A. Adaptive goal switching was modeled using a Bayesian 
framework, where the prior belief about the current target utility, 
𝑈(𝑡𝑎𝑟𝑔𝑒𝑡), was updated based on the likelihood derived from fixated
items (𝑁௧). This yielded a posterior beta distribution, capturing belief 
updates over time. B. Utility was defined by the penalty incurred for 
each target given the fixated number. This utility varies depending on 
the fixated number’s position in the equation with unique learning rate 
parameters. The coefficients 𝛼 and 𝛽 indicate inferred probabilities of
selecting the current vs. alternative target, respectively. C. The model 
predicted the probability of selecting each target based on real-time 
utility estimates, with the posterior probability serving as the model’s 
prediction of participants’ target selection. 

Figure 3. A. High-performing 
participants selectively switched 
targets when the utility of the
current target was low, and 
maintained their selection when 
it remained high. B. Our 
Bayseian model outperformed 
chance in predicting target 
selection, correlating with the
participants’ task performance.
C. Learning rates for both the 2nd

and 3rd number positions 
positively correlated with task 
performance. D. A parametric 
GLM analysis showed that 
model-derived goal-switching
probabilities were represented 
in the mPFC, ACC, NAcc, and 
insula. 



Acknowledgments 

This work was supported by IBS-R015-D1, 24-BR-03-
04, the Fourth Stage of Brain Korea 21 Project in 
Department of Intelligent Precision Healthcare, 
Sungkyunkwan University, and National Research 
Foundation of Korea funded by the Ministry of 
Education (RS-2024-00412481, RS-2024-00348130, 
RS-2025-02304581) 

References  

Callaway, F., van Opheusden, B., Gul, S., Das, P., 
Krueger, P. M., Griffiths, T. L., & Lieder, F. (2022). 
Rational use of cognitive resources in human 
planning. Nature Human Behaviour, 6(8), 1112-1125. 

De Martino, B., & Cortese, A. (2023). Goals, usefulness 
and abstraction in value-based choice. Trends in 
Cognitive Sciences, 27(1), 65-80. 

Eluchans, M., Lancia, G. L., Maselli, A., D’Alessando, 
M., Gordon, J., & Pezzulo, G. (2023). Adaptive 
planning depth in human problem solving. bioRxiv, 
2023-05. 

Gordon, Jeremy, John Chuang, and Giovanni Pezzulo. 
"Gaze dynamics prior to navigation support 
hierarchical planning." bioRxiv (2025): 2025-01. 

Hunt, L. T., Daw, N. D., Kaanders, P., MacIver, M. A., 
Mugan, U., Procyk, E., ... & Kolling, N. (2021). 
Formalizing planning and information search in 
naturalistic decision-making. Nature 
neuroscience, 24(8), 1051-1064. 

van Opheusden, B., Kuperwajs, I., Galbiati, G., Bnaya, 
Z., Li, Y., & Ma, W. J. (2023). Expertise increases 
planning depth in human gameplay. Nature, 
618(7967), 1000-1005. 


