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Abstract

Human decision-making behavior varies widely across in-
dividuals and task conditions. This variability is often
interpreted as a variety of suboptimal inference strate-
gies, but the principles that govern these suboptimali-
ties are not well understood. We propose that one ma-
jor source of variability in suboptimal decision-making re-
flects a specific form of bounded rationality that involves
capacity-limited inference. We developed and used new
theoretical and empirical approaches to study capacity-
limited inference based on the information-bottleneck
framework. These approaches allowed us to relate the
amount of information used (capacity), to the effective-
ness with which it was used (accuracy), by individual hu-
man subjects performing a variety of inference tasks. We
found that substantial variability both within and across
subjects reflected optimal capacity-accuracy trade-offs.
Strikingly, the same capacity-accuracy tradeoffs were
evident among those using heuristic (biased) inference
strategies, which inherently failed to maximize perfor-
mance for a given level of information use but nonethe-
less appeared to be implemented in a similarly capacity-
limited manner. The results imply that human inference
reflects consequential, and flexible, capacity limitations
that impose structure on suboptimal choice behavior.
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Background

Many decisions depend on inferences about latent properties
of the environment that determine the outcomes associated
with different choices. These inferences require evaluating
observations that provide probabilistic evidence for or against
different possible latent states. For tasks requiring such in-
ferences, human choice behavior varies widely between in-
dividuals (Glaze, Filipowicz, Kable, Balasubramanian, & Gold,
2018). This variability often manifests as a range of seemingly
suboptimal strategies that differ in their degree of departure
from optimal Bayesian inference. This high degree of individ-
ual variability poses a substantial challenge to elucidating the
general mechanisms subserving inference in the brain.

One possible explanation for this range of suboptimal be-
haviors is bounded rationality (Simon, 1955). This idea pro-
poses that decision-makers strive to perform effectively, but
have limited resources such as time, energy, and computa-
tional capacity that are costly to use. Decision-makers can
flexibly adjust the relative importance of limiting resource use
versus maximizing performance, creating a natural stratifica-
tion of strategies that range from maximally accurate but re-
source intensive, to resource-frugal but less accurate.

We propose that one form of bounded rationality arises
from the costs associated with encoding information from the
observations and using them to form inferences about the
world. Accordingly, we predict that decision-makers flexibly
adjust how much information their inferences retain from the

observations, leading to an information bottleneck in the infer-
ence process. As detailed below, this idea predicts particu-
lar relationships between capacity and accuracy for different
forms of suboptimal inference that we used to better under-
stand individual differences in decision-making behaviors.

Information bottleneck framework

We evaluated these hypotheses by applying the information
bottleneck (IB) method (Tishby, Pereira, & Bialek, 2000) to
human inference. Let X be the discrete observations avail-
able to a decision-maker, Y be the latent states that are prob-
abilistically related to the observations, and R be the poten-
tially stochastic inferences a decision-maker makes about Y
after observing X. We can measure how much information
a decision-maker uses from the observations (inference ca-
pacity) with 7(X; R), the mutual information between X and R.
Likewise, we can measure how closely their inferences match
the true latent state (inference predictiveness) by I(R;Y),
the mutual information between R and Y. We can explicitly
capture the tradeoff between information compression and ac-
curacy with the 1B optimization problem,
min I(X;R) — BI(R;Y), (1)
p(rlx)

where 3 determines the relative importance of inference ca-
pacity and inference predictiveness, and the problem is solved
by optimizing the choice probabilities, p(r|x). Solving (1) over
the range of all B values results in the IB bound, which defines
the maximum possible 7(R;Y) for a given I(X;R). Given that
we can compute I(X;R) and I(R;Y) from empirical choice
data, we can evaluate our hypotheses by determining where
individuals fall relative to this bound. Individuals that fall on or

near the IB bound are information efficient.
Notably, under conditions common to many decision-
making tasks, we find that solutions to (1) satisfy the following:

i ) P p(y=ilx)

p (r:z|x):W, ()
where p(y = i|x) is the posterior probability of the latent
state corresponding to the inference r = i, B is the same
from (1), and a* is the log of the accuracy-inaccuracy ratio
for a given PB. In other words, capacity-limited, information-
efficient inference is equivalent to noisy optimal inference such
that degree of compression is equivalent to noise magnitude.

Individual variability reflects optimal
capacity-performance tradeoffs

We analyzed human choice behavior from two inference
tasks. In one, subjects predicted which of two horses would
win a race upon observing a set of shapes sampled based on
which horse would win. In the second, subjects inferred from
which of two hidden source jars beads were being drawn.

In all experiments, inference capacity varied substantially
across individuals, but many were on the IB bound (Figure
1). However, the proportion of subjects on the bound var-
ied by experiment. The choice behavior of individuals on the
IB bound matched our theoretical result that capacity-limited,



A Horse prediction (base variant)

B Horse prediction (alternate variant)
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Figure 1: A. Individual subjects (1-4) on the IB bound (solid black curve, center plot) exhibit choice probabilities (black points,
top/bottom plots) indicative of noisy optimal inference, matching theoretical predictions of IB-optimal behavior (dashed blue
curves). Choice noise magnitude is tightly linked to inference capacity, decreasing 1 to 4. B-C. Many individuals off the IB bound
fall along heuristic IB curves (dashed black curve). Example subjects (1-3) poorly match noisy optimal inference (top left plots)
and instead match noisy heuristic inference (dashed red curves) with the same noise-capacity equivalence as the full IB bound.

information-efficient inference is equivalent to optimal infer-
ence corrupted by logistic choice noise. The empirical choice
probabilities of these individuals (Figure 1A, top/bottom plots,
black points) closely matched the theoretical choice probabil-
ities computed using equation (2) (dashed blue curves), with
inference capacity inversely related to choice noise magnitude
(decreasing from 1 to 4) as predicted.

Any deviation from equation (2) falls off the bound. Thus,
it is notable that many who fall off the bound exhibit choice
behavior consistent with heuristic inference strategies. These
simplify the inference problem by, for example, ignoring less
informative observations or treating different observations as
equally informative. The choice probabilities of these subjects
poorly matched noisy optimal inference (Figure 1B-C, top-
left plots), but closely matched noisy versions of task-specific
heuristics (dashed red curves). Remarkably, the choice noise
magnitude of these subjects varied with inference capacity in
precisely the same way as those along the full IB bound. We
confirmed these results with a standard model-based analy-
sis, which showed these subjects were better fit by the noisy
heuristic model (Figure 1B-C, center plots).

In a variant of the horse prediction task in which we ma-
nipulated decision time (Figure 2), we found that people in-
creased their inference capacity when given more time to de-
cide (p <1e-10). Crucially, people also increased their accu-
racy in a way that maintained information efficiency (p <1e-6).
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Figure 2: Horse prediction task, speed-accuracy variant.

In conclusion, we find optimal capacity-performance trade-
offs that are indicative of an information bottleneck acting on
inference. Our approach also indirectly captures another ma-
jor axis of individual variability - the use of heuristic strategies.
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