
Rapid unsupervised alignment with the natural image manifold 
 

Ananya Passi (apassi1@jh.edu) 
 Department of Cognitive Science, Johns Hopkins University 

 Baltimore, MD 21218 United States of America  
 

Brian S. Robinson (brian.robinson@jhuapl.edu)  
Johns Hopkins University Applied Physics Laboratory  

Laurel, MD 20723, United States 
 

Michael F. Bonner (mfbonner@jhu.edu)  
Department of Cognitive Science, Johns Hopkins University 

 Baltimore, MD 21218 United States of America 
 

 

mailto:apassi1@jh.edu


Abstract 

There is a stark contrast between the nature of 
feature learning in biological and artificial vision. 
While brains learn without explicit supervision and 
with little data, deep neural networks require 
supervised feedback and massive training sets. Here 
we show that a surprisingly simple unsupervised 
learning algorithm can yield large improvements in 
the brain alignment of a deep vision model. 
Specifically, we trained a network in which each 
layer learns to compress its representations onto 
the principal modes of variance for natural 
images—a form of local learning that does not 
require backpropagation or supervision. Using a 
relatively small sample of training images, this 
unsupervised learning algorithm strongly improves 
the network’s ability to predict the image-evoked 
fMRI responses of visual cortex, and it makes 
downstream learning on an image-classification task 
more efficient. Remarkably, after an initial 
unsupervised-learning phase, the first half of the 
network’s layers can be frozen with little impact on 
the ability to learn image classification. Together, 
these findings suggest that a parsimonious learning 
algorithm—operating locally and without 
supervision—may be sufficient to induce the 
features of early-to-mid-level vision and may 
accelerate the learning of downstream task-specific 
functions.  
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Model Architecture 
In order to simplify the pre-training process and reduce 
the number of learnable parameters, we deliberately 
chose an architecture that incorporates strong inductive 
biases, including convolution and band-pass filtering in 
all layers (Mallat, 1989). This design allowed us to 
isolate the contribution of unsupervised pre-training. We 
used a convolutional architecture in which spatial and 
channel-mixing are factored into separated operations 
(Guth et al., 2024). We used a fixed set of 
spatial-wavelet filters and learned the channel-mixing 
filters. Each layer learned the principal components of its 
input activations for 100,000 images from the ImageNet 

training set (Krizhevsky et al., 2012). Through 
pre-training, we assigned the weights of the 
channel-mixing filters as the eigenvectors of the first K 
principal components, allowing each layer to compress 
its inputs onto the dominant modes of variance for 
natural images. The dimensionality of these compressed 
representations was then expanded again during the 
spatial convolution operation, which included a nonlinear 
activation function. This approach balances 
dimensionality compression and expansion, allowing the 
learning procedure to be implemented sequentially in a 
deep hierarchy without the representations becoming 
overly compressed and low-dimensional. For 
comparison, we also examined an untrained model with 
random channel-mixing and a fully supervised model 
trained on ImageNet classification.  

 
Fig 1: Each layer of the deep vision model consists 
of expansion through spatial mixing followed by a 
learned compression through channel mixing. (C: 
number of channels, Wi /Hi: width/ height of input 
feature maps, N: number of wavelet filters, Wo /Ho: 
width/ height of output feature maps) 

Methods and Results  
To study brain alignment,  we evaluated how well our 
model performed at predicting image-evoked cortical 
responses in human fMRI data from the ventral visual 
stream in the Natural Scenes Dataset (Allen et al., 
2022). Feature vectors from the best performing layer of 
our model were mapped to cortical responses using a 
regression procedure, which we validated on held-out 
test data. The encoding score of each model was 
obtained by measuring the correlation between the 
predicted and actual neural responses. Figure 2 shows 
that our local unsupervised model matches the 
performance of conventional supervised learning up to 
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intermediates layers. In contrast, the randomly initialized 
model performs substantially worse. 

 
Fig 2: (left) Performance of random initialization,  
unsupervised and supervised learning. (right) 
Difference in performance between unsupervised 
learning and random initialisation.  

  
To assess whether unsupervised initialization facilitates 
subsequent supervised learning, we performed 
supervised training on the mini-ImageNet image 
classification task (Vinyals et al., 2016). We evaluated 
both classification accuracy and encoding scores for 
models with and without unsupervised initialisation. 
Figure 3 illustrates the progression of these metrics over 
training epochs, revealing that models with unsupervised 
pre-training converge to higher accuracy and encoding 
scores more rapidly than a conventionally initialized 
network. This demonstrates that unsupervised 
pre-training can substantially enhance the efficiency of 
downstream supervised learning.  

 
Fig 3: (left) Classification accuracy and (right) 
encoding score over training epochs in models with 
random initialization or unsupervised pre-training 
 
To further examine how unsupervised pre-training 
influences early- to mid-level representations, we froze 
varying numbers of initial layers in models subjected to 
unsupervised pre-training and in randomly initialized 

models. We then applied supervised learning to the 
remaining unfrozen layers. As shown in Figure 4, models 
with unsupervised pre-training maintain robust 
classification accuracy and encoding scores—even 
when the first half of their layers are frozen—indicating 
that the learned representations in these early layers are 
sufficiently general and transferable to downstream 
tasks. 

 

 

 
Fig 4: Classification accuracy and encoding scores 
across training epochs for models with varied frozen 
layers, in models with random initialization or 
unsupervised pre-training. 

 
 
In sum, our findings show that a surprisingly simple 
unsupervised learning algorithm, which iteratively 
compresses and expands the representations in a deep 
hierarchy, enhances alignment with the human visual 
cortex and improves downstream task-learning 
efficiency. 
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