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Abstract1

Learning to read is essential for social participation.2

Here, we investigate how humans and baboons learn or-3

thographic information. We use a neuro-cognitive mecha-4

nistic model—the Speechless Reader (SLR) and two con-5

nectionist models (CORnet-Z and ResNet-18) to investi-6

gate a human and a baboon dataset. The connection-7

ist models employ neuronally plausible CNN architec-8

tures, while the SLR provides transparent implementa-9

tions of orthographic decision behavior using pixel, let-10

ter, and letter sequence level prediction errors as repre-11

sentations. To align models and data, we train the mod-12

els using identical trial sequences for each human and13

baboon. The SLR outperforms the CNNs across both14

species, especially on trial-wise metrics. While CNN re-15

sponses diverge from individual behavioral patterns, the16

SLR’s interpretable errors reveal that the complexity of or-17

thographic representations increases with training. This18

finding suggests that domain-specific mechanistic mod-19

els offer valuable insight into learned visual behavior20

across species.21
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Introduction24

Efficient reading is critical for success in modern societies25

(Huettig & Pickering, 2019). Reading research is dominated26

by two types of models: mechanistic and connectionist mod-27

els. Mechanistic models provide a transparent, handcrafted28

implementation of cognitive processes in reading (Coltheart29

et al., 2001). This line of research was particularly success-30

ful in generating effective remediation programs (i.e., phon-31

ics; Galuschka et al.,2014) and descriptions of individual dif-32

ferences in reading behavior (i.e., computational phenotypes;33

Perry et al.,2019). In contrast to these domain-specific mod-34

els, data-driven connectionist models successfully described35

benchmark effects in reading behavior (i.e., Seidenberg &36

McClelland,1989; see Norris (2013) for a review). Recent37

work increasingly integrates CNN-based vision models to un-38

derstand behavior and neural dynamics. Here, we assess39

whether learning orthographic stimuli—letter strings—can be40

better understood through a mechanistic, neuro-cognitively41

grounded approach.42

Methods43

We use two orthographic learning datasets. Baboons44

(Grainger et al., 2012) and humans (Eisenhauer et al., 2019)45

participants and models learned to classify known and novel46

letter strings over multiple trials. We used three models for47

simulation: (i) Speechless Reader (SLR, Gagl et al., 2024): A48

mechanistic model allowing the inspection of how participants49

learned. (ii) CORnet-Z: A shallow recurrent CNN designed to50

mimic cortical processing (Kubilius et al., 2018). (iii) ResNet-51

18: A deeper CNN with skip connections (He et al., 2016).52

We trained CORnet-Z and ResNet-18 models using Py-53

Torch (Paszke et al., 2019) with a binary output layer (familiar54

vs. novel) and cross-entropy loss. One model was trained for55

each human and baboon (learning rate of 0.0001; Adam opti-56

mizer (Kingma & Ba, 2014)). Input stimuli were grayscale let-57

ter strings (228×228 pixels, black Arial on white). To simulate58

prior visual experience, early layers were frozen in ImageNet-59

pretrained models (ResNet: “conv1”, “bn1”, “layer1”; COR-60

net: “V1”, “V2”). Human models were further pre-trained on61

a lexical decision task using 1,074 German words and 1,07462

pseudowords. Baboons’ models were trained for one epoch63

on the same stimuli they saw, without validation or data aug-64

mentation, mirroring the experimental setup (see Hannagan65

et al.,2014,Linke et al.,2017 for a similar approach). Hu-66

man models were fine-tuned across four training epochs and67

validated on font-switched data (Times New Roman), which68

matched the experimental sessions (N = 960; n = 240 per ses-69

sion). We measured model accuracy and used mean-squared70

errors and trial-wise similarity (see Geirhos et al., 2020) to71

compare the model to participant responses.72

Results73

Baboon Data. Baboons improved their performance grad-74

ually, with the first noticeable gains after about 1,000 trials75

(Fig. 1A). In contrast, both SLR models achieved higher per-76

formance much earlier—around 60% for the best-fitting and77

70% for the best-performing variant. ResNet performed nearly78

perfectly, and CORnet showed a performance of around 85%.79

These differences in the behavior resulted in higher MSE val-80

ues, reflecting the difference between model and baboon per-81

formance, for connectionist models than the mechanistic SLR82

implementations (Fig. 1B). After approximately 10,000 trials,83

all models reached similar accuracy levels. Still, the best-fit84

SLR model had the lowest MSE and the highest trial-wise85

similarity (Fig. 1C). While connectionist models showed a86

lower trial-wise similarity than both SLR models, they still had87

a higher similarity (i.e., κ) than the average between-baboon88

similarity.89

Human Data. Mean human and model accuracies show an90

increase with learning for all except the CORnet model (see91

Fig. 1D). Human performance was unmatched, with only the92

best fitting SLR achieving 80% accuracy after four training93



Figure 1: Baboon, human and model performance from the ResNet, CORnet, and two Speechless Reader model implemen-
tations (Best-fit and Best-performance variant). (A) Baboon, SLR, and CNN training session-level accuracy, including the 95%
confidence intervals. (B) Model fit based on session-level mean squared errors comparing model with baboon performance.
(C) Error consistency values (Cohens κ) plotted against the expected error overlap by chance, comparing model and baboon
behavior on the level of single trials. Higher κ values indicate stronger item-level behavioral agreement that tends to increase
with the expected error overlap (i.e., at high accuracies, the expected overlap is typically higher). The expected error overlap
is based on the accuracies of two models (e.g., best-fit SLR and human). The higher the two model accuracies are, the more
likely it is that they made the same item-level decisions by chance. In (D), we show session-level accuracy and CNN validation
accuracy (E), session-level model fit, and (F) trial-level error consistency for the human dataset.

sessions. Again, connectionist models had lower overall and94

trial-wise similarity than both SLR variants (see Fig. 1E/F).95

Only ResNet showed a relatively high κ of 0.14 in the first96

session (i.e., highest κ of all connectionist models, Range: -97

0.02 - .10). Thus, both SLR models simulated the learning98

trajectories more accurately in both datasets, suggesting that99

we can utilize them for computational phenotyping.100

Neuro-cognitive Phenotypes. The best-fitting SLR101

model reveals that, early in learning, all three102

representations—visual-pixel-level (oPE), letter-level (LPE),103

and sequence-level (sPE)—are engaged in both humans and104

baboons (Humans/Baboons, % oPE: 19/59, % LPE: 97/66, %105

sPE: 92/67). As experience increases and oPE becomes less106

relevant, reliance shifts toward LPE and sPE, which support107

orthographic processing (Humans/Baboons, % oPE: 0/31,108

% LPE: 100/97, % sPE: 100/88). This shift coincides with109

growing differences in prediction errors between learned and110

novel letter strings, leading to a decline in the informativeness111

of oPE (oPE difference learned/novel: early: -.7/-.4; late:112

-.6/-.1). Eventually, oPE shows the smallest error differences,113

explaining its reduced contribution to orthographic decisions.114

Discussion115

Here, we demonstrate that simple, domain-specific models,116

such as SLR, can effectively capture the learning dynamics117

of both baboons and humans in orthographic learning, out-118

performing general-purpose connectionist models (ResNet,119

CORnet) with increased interpretability. In baboons, connec-120

tionist models rapidly reached ceiling performance due to task121

simplicity (i.e., frequent stimulus repetition). In contrast, in the122

human dataset, connectionist models struggle as task diffi-123

culty increases (i.e., more stimuli are learned in fewer trials).124

In contrast, the SLR models revealed a consistent learning125

progression. From the used representation, we find that with126

learning, representations change from low-level pixel repre-127

sentations to higher-level orthographic units, aligning with the-128

ories of reading development (Gagl et al., 2015).129

SLR’s strength lies in its parsimony (only one free parame-130

ter), resilience to overfitting, and ability to offer interpretable,131

individual-level cognitive insights. These qualities make it well-132

suited to model reading, learning, and identifying precursors133

of reading difficulties. Ultimately, the results support the value134

of mechanistic, task-specific models in cognitive neuroscience135

and reading research.136
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