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Abstract
Large language models (LLMs) have shown alignment
with human brain activity during language tasks, but it
remains unclear whether this correspondence extends
to higher-order cognition such as abstract reasoning.
In this study, we compared human EEG responses—
specifically fixation-related potentials (FRPs) time-locked
to gaze fixations onset —to the internal activations of
eight open-source LLMs performing a visual abstract rea-
soning task. Intermediate LLM layers showed clear differ-
entiation across reasoning pattern types, suggesting po-
tential specialization. While the best-performing models
reached human-level accuracy, they did not consistently
align with human behavioral patterns. Representational
similarity analysis revealed only moderate correlations
between model activations and FRP data. This may re-
flect a lack of neural alignment in LLMs and/or that there
is only some relevant cognitive signal in the FRPs. These
findings highlight both the promise and limitations of us-
ing LLMs as models of human abstract reasoning.
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Introduction
The past three decades have seen artificial intelligence sys-
tems surpassing human abilities in specialized tasks, includ-
ing board games, video games, and complex biological prob-
lems like protein folding (Silver et al., 2016; Mnih et al., 2015;
Abramson et al., 2024). Early breakthroughs with convo-
lutional neural networks, notably AlexNet, demonstrated re-
markable similarities between neural network layers and hu-
man visual processing, specifically in terms of hierarchical
feature extraction from low-level edge detection to higher-level
shape recognition (Krizhevsky et al., 2012; Cichy et al., 2016;
Yamins et al., 2014).

The emergence of transformer-based Large Language
Models (LLMs), such as ChatGPT, marked a significant shift,
showcasing impressive capabilities in human-like language
comprehension and reasoning tasks. Recent studies revealed
substantial correspondence between internal representations
of these models and neural activity recorded during linguis-
tic and semantic tasks in humans (Schrimpf et al., 2021;
Caucheteux et al., 2022). Larger and more sophisticated

models, in particular, showed stronger alignment with neu-
ral signatures, including the prediction of neural responses
such as the N400 event-related potential (Huber et al., 2024).
Such alignment suggests that brain-like processing could be
an emergent property of optimizing language understanding.

However, it remains unclear whether this representational
alignment also extends to higher-order cognitive functions,
such as abstract reasoning. Here, we directly address this
question by comparing eye-fixation related neural representa-
tions recorded with EEG to internal activations within several
LLMs solving analogous abstract reasoning problems.

Materials and methods

Task

Participants were seated in front of a computer screen while
EEG signals were recorded (64-channel BioSemi; 2048 Hz)
simultaneously with eye tracking (EyeLink 1000 Plus; 2000
Hz). On each trial, participants performed an abstract rea-
soning problem in which they viewed a sequence of icons ar-
ranged according to an implicit logical rule (a “pattern”, such
as ABBAABBA). The final icon was masked by a question
mark and the goal was to select, using the keyboard, the cor-
rect continuation out of four possible options displayed below.

The experiment comprised 400 unique trials divided into 5
sessions of 80 trials each, with each session containing 10
trials per pattern type.

Large Language Models

We evaluated eight open-source, instruction-tuned LLMs of
varying sizes: Llama (3.2-3B, 3.3-70B), Gemma (2-2b, 2-9b,
2-27b), Qwen2.5-72B, DeepSeek-R1-Distill-Llama-70B, and
Microsoft Phi-4. These models were downloaded and run lo-
cally using the Hugging Face library and activations from each
of their hidden layers were exctracted. Each LLM was queried
one prompt at a time using a one-shot prompting strategy on
a text-based version of the task, with each icon replaced by
a one-word label. Additional instructions were provided to try
and ensure adherence to a specific response format and a
clear understanding of the task.

Data Analysis

EEG representations FRPs to each icon of a trial’s se-
quence were extracted (-100 to 600 ms relative to fixation
onset) and averaged together across occipital electrodes and



across fixations per trial, thus producing a trial-level represen-
tation of EEG activity related to the neurocognitive processing
of icons during abstract reasoning. It was thought that these
FRPs represented snapshots into the cognitive processing of
pattern completion. We also leveraged the fact that the signal-
to-noise ratio of EEG improves by averaging over multiple seg-
ments time-locked to fixations within one experimental trial.

LLM-layer representations We extracted a subset of each
layer’s activations to isolate those related specifically to the
tokens of a given sequence, producing a trial-level represen-
tation of a layer’s activity to that sequence.

Representational Similarity Analysis (RSA) Representa-
tional Dissimilarity Matrices (RDMs) were generated from the
FRP time-samples and LLM layers’ activations data at the
pattern-level, that is, averaged across sequence representa-
tions pertaining to the same pattern type.

The layer RDMs of each model were compared to an “ideal”
reference RDM, consisting of 0’s for diagonal elements and 1’s
for off-diagonal elements. The layer with the highest similarity
to this reference RDM was then used in the comparison with
human RDMs.

Figure 1: Accuracy By Pattern Type. Best LLMs performed
above 60% overall, Worst LLMs below 60%.

Figure 2: Relationship between FRP (x-axis) and accuracy (y-
axis) alignment with Humans across LLMs.

Results
Behavioral Alignment In terms of performance on the
task, Llama-3.3-70B achieved the highest accuracy (81.75%),

Figure 3: Layer-wise similarity between LLM representations
and an idealized reference RDM.

closely followed by Qwen2.5-72B (80.50%) and DeepSeek-
R1-Distill-Llama-70B (75.00%). All other models fell below
40.00%.

However, high accuracy did not necessarily equate
to human-like behavior. While both Qwen2.5-72B and
DeepSeek-R1-Distill-Llama-70B showed a relatively high cor-
relation to the accuracy by pattern of the human group (0.72
and 0.71, respectively), Llama-3.3-70B, the top performer,
only showed a weak correlation (0.27). The latter was even
surpassed by Phi-4, a low-performing model displaying a 0.67
correlation with the human group.

Representational Alignment The RSA comparing activa-
tions of the best layer to human FRP data yielded mod-
erate correlations (about 0.3 to 0.4) for all models. Mod-
els with higher behavioral alignment did not show stronger
similarity with neural data. Qwen2.5-72B and DeepSeek-
R1-Distill-Llama-70B, which demonstrated behavioral perfor-
mances similar to that of humans , did not differentiate them-
selves from the other models here, with correlations of 0.39
and 0.32, respectively. Interestingly, Phi-4, with an overall ac-
curacy of 32.00% on the task, ranks highest in representa-
tional similarity with neural data, again surpassing better per-
forming LLMs.

Discussion

Our results showed moderate representational similarity be-
tween human FRP data and LLM activations, but without a
clear advantage for higher-performing or behaviorally aligned
models. Interestingly, strong task performance did not neces-
sarily predict human-like patterns of accuracy. This relatively
inconclusive representational alignment might be due to limi-
tations in the FRPs, which might have been too noisy or insuf-
ficiently sensitive to capture the cognitive processes underly-
ing abstract reasoning. In contrast, intermediate LLM layers
consistently displayed clear differentiation of abstract pattern
types, regardless of task performance. Future work should
therefore investigate the computational roles of these special-
ized layers to clarify their function and relevance in reasoning
tasks.
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