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Abstract
Acoustic and semantic representations involved in the
temporal dynamics of the cerebral processing of natu-
ral sounds are often studied separately. As a conse-
quence, we lack direct knowledge of how the human brain
transforms complex acoustic waveforms into semantic
representations of the acoustic environment. Here, we
aimed to elucidate this process by predicting magnetoen-
cephalographic (MEG) responses to natural sounds us-
ing acoustic, and semantic (text-based) models. Criti-
cally, we also consider two recently developed sound-
processing convolutional neural networks (CNNs) that
differ only in their loss function: CatDNN, which learns
sound-event categories, and SemDNN, which learns con-
tinuous semantic embeddings (Word2Vec). We observe
that DNNs better predict the dynamic MEG response, ex-
cept at a long latency (800–1000 ms) where higher-level
acoustics seems to dominate (auditory dimensions). Fo-
cusing on DNNs, we observe a potential switch from ini-
tial protoacoustic/categorical semantic representations
(CatDNN, 250 ms) to more refined continuous seman-
tic representations (SemDNN, 500–800 ms). Overall, our
findings suggest limitations in the text-based modeling of
the cerebral representations of natural sounds, and give a
temporally resolved description of the cerebral dynamics
of the acoustic-to-semantic transformation.

Keywords: Auditory processing ; Natural sounds ; Acoustic-to-
semantic ; Artificial neural networks ; RSA

Introduction
Extracting meaning from sounds is essential for real-world be-
havior and relies on transforming the acoustic input to se-
mantic representations. Recent studies have shown that
event-classification convolutional neural networks (CNNs) bet-
ter model auditory processing, but also highlight the need to
disentangle acoustic and semantic components through care-
ful model comparison. Giordano et al. (2023) used complex
acoustic, semantic, and CNN models to clarify the contribution
of each in modeling fMRI and behavioral responses to con-
trolled natural sounds. They found predominance of acous-
tic over semantic models in Heschl’s gyrus (HG), while both
are equally well represented in the Superior Temporal Gyrus
(STG). CNNs match acoustic model performance in HG, out-
perform all models in the acoustic-based dissimilarity task and
in STG, but are outperformed by semantic models in the label-
based dissimilarity task. A similarly controlled computational
approach is still lacking, however, for detailing the temporal dy-
namics of cerebral representations (e.g., De Lucia et al., 2010;
Lowe et al., 2023). To address this shortcoming, we carried
out a study mapping acoustic, semantic, and CNN models of
sound processing onto dynamic MEG responses to natural
sounds.

Methods
Experimental design Each participant (N=21) listened to
a common set of sounds (duration = 2 s each) eight times

across two MEG sessions (total of 25,200 trials) while per-
forming a one-back repetition detection task. The Common
Set consisted in 150 sounds designed to minimize covari-
ance between intermediate (eight layer of Yamnet network)
and semantic (Word2Vec) models(Araújo et al., 2024). Each
sound is labeled by its source (what/who), the action involved
(how), and their combination (what/who-how) (Giordano, de
Miranda Azevedo, Plasencia-Calaña, Formisano, & Dumon-
tier, 2022). Additional sound sets, unique to different groups of
participants, and presented throughout the same experiment
are not considered for the results shown here.

Computational models We considered three classes of
models: acoustic, semantic (text-based), and CNN models.
Acoustic models approximating processing at various stages
of the sound-processing hierarchy. The Cochleagram and
Modulation Transfer Function approximated lower-level acous-
tic representations in subcortical structures and in the pri-
mary auditory cortex, respectively (Giordano, Esposito, Va-
lente, & Formisano, 2023). The Auditory Dimensions model
(AudDim), included multiple components that estimate psy-
choacoustic attributes (pitch, loudness, periodicity, brightness,
and roughness) that better capture acoustic representations
in the superior temporal gyrus (STG) (Giordano et al., 2023).
Each of these models was estimated for three 1 s windows
of the 2 s sound, starting at 0, 0.5, and 1 s from sound
onset. Text-based semantic models: Word2Vec, and a co-
occurrence model estimating semantic similarity based on the
co-occurrence of text labels in a large database of descrip-
tions of sound scenes. Both models included three separate
components, focusing on what labels alone, how labels alone,
or on the similarity between what and how labels. We finally
considered two recently developed CNN models of sound pro-
cessing (Esposito et al., 2024) differing only in the loss func-
tion: CatDNN, which learned sound-event categories (one-hot
encoding), and SemDNN which learned continuous seman-
tic embeddings (derived from Word2Vec). For both models,
we estimated activations in each convolutional layer and the
output considering three separate 1 s windows of the sound
stimulus (windows beginning at 0, 0.5, and 1 s).

Model-representation analysis We considered a cross-
validated representational similarity analysis framework
(leave-one-participant-out) to predict the time-varying dissim-
ilarity of sounds (CommSet) in MEG sensor space (MEG
representational dissimilarity matrices – RDMs) consider-
ing the sound dissimilarities according to the computational
models. MEG crossnobis distances (Walther et al., 2016)
were estimated independently for each participant (leave-one-
repetition-out with whitening based on MNE Python approach)
by considering the 306 sensors as features (gradiometers and
magnetometers). For all models except for the co-occurrence
model, we considered as predictors both the Euclidean and
cosine dissimilarity of sounds according to the features of
each model component. For the co-occurrence model, we
considered three separate approaches for deriving semantic
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Figure 1: Computational representation of natural sounds in dynamic MEG responses. Sound duration = 2 s.

dissimilarities based on co-occurrences (negative of Jaccard
coefficient, joint probability, and of pointwise mutual informa-
tion).

Model representation analyses relied on a leave-one-
participant-out approach for the prediction of MEG RDMs
based on model RDMs (Giordano et al., 2023) within a regres-
sion framework. We followed the latest practice of whitening
model and MEG RDMs to eliminate mathematical dependen-
cies brought by the distance computation (e.g., the distance
between sounds A and B is not independent of the distance
between sounds A and C) (Diedrichsen et al., 2021). Finally,
we implemented a novel Monte Carlo approach for eliminat-
ing biases in model-predictivity brought by differences in the
number of predictors, resulting in model predictivity estimates
standardized considering the mean and standard deviation of
null-hypothesis Monte Carlo distributions (zR2

cv).

Results
Figure 1 illustrates the predictive power of various classes
of computational models. We include a provisional Monte
Carlo significance threshold in both uncorrected form (p
= 0.001), and Bonferroni-corrected across time-points and
model classes within each panel. In the left panel, models are
grouped into Acoustics, Semantics (text-based), and sound-
to-semantic CNNs. Acoustic and CNN models outperform Se-
mantic models (max zR2

cv=25 for Semantics; mean zR2
cv=50

for Acoustics, 75 for CNNs). The predictive power of both
Acoustic and CNN models peaks at 250ms, but CNNs reach
higher zR2

cv values, suggesting that they do not merely capture
the representation of acoustic features. From 800–1100ms,
acoustic models better predict MEG dissimilarities than CNNs.
After 1100ms, CNNs continue to perform well while the predic-
tivity of Acoustics drops. In the middle panel, we detail the rep-
resentation of the three acoustic models. The post-onset pre-
diction peaks at 250ms and is mainly driven by the Cochlea-
gram and MTF models (max zR2

cv=275), while the AudDim
model shows a weaker predictive power (max zR2

cv=160). Af-
ter this peak, Cochleagram and MTF predictions gradually
decline, while AudDim shows a predictive advantage in the
800–1100ms window. A longer latency for the representa-
tion of the AudDims model than for the Cochleagram and

MTF models is consistent with the representation of these
acoustic attributes in the post-primary auditory cortex (STG),
and highlights their potential higher-level nature and compu-
tation based on more finely grained representations such as
the MTF. In the right panel, we contrasted the representation
of the first two convolutional layers of each CNN (CatDNN-
Early and SemDNN-Early) with that of the subsequent three
layers, which are more strongly diversified between the two
networks (results not shown). As expected, early CatDNN
and SemDNN layers are characterized by similar peak levels
of MEG predictivity, with a small advantage for CatDNN-Early
predictions. More importantly, SemDNN-late outperforms all
models between 500–800ms, suggesting a potential switch
from early categorical (/acoustic) representation to later con-
tinuous semantic representations.

Conclusions
Our results show the ability of CNNs to predict MEG response
dissimilarities by potentially capturing both acoustic and se-
mantic underlying processes, while text-based models fail to
reflect the brain’s semantic processing of natural sounds. Im-
portantly, text-based models of sound processing, including
Word2Vec, capture less accurately MEG responses to natural
sounds than CNNs that learn Word2Vec directly from sound
(SemDNN). This suggests that the cerebral representation of
the semantics of natural sounds overlaps only in part with that
of linguistic semantics.
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Araújo, M., Plegat, M., Marinato, G., Esposito, M., Herff, C.,
Giordano, B. L., & Formisano, E. (2024). Optimal stimulus
selection for dissociating acoustic and semantic processing
of natural sounds. Conference on Cognitive Computational
Neuroscience.

Bizley, J. K., & Cohen, Y. E. (2013). The what, where and
how of auditory-object perception. Nature reviews. Neuro-
science, 14.

Diedrichsen, J., Berlot, E., Mur, M., Schütt, H. H., Shahbazi,
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