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Abstract
Obtaining an accurate topography of cognitive functions
is a major endeavour in human brain imaging. Recent ad-
vancements have been driven by intensive within-subject
scanning, known as deep phenotyping, to address inter-
subject variability. However, work is still needed to quan-
tify how specific cognitive functions contribute to brain
activation. In this study, we integrate statistical sum-
maries from the Individual Brain Charting project (IBC)
with the Cognitive Atlas. Each fMRI contrast map was
annotated with cognitive components derived from its as-
sociated concepts. We then applied dictionary learning to
estimate the contribution, or weight, of each component
to a given contrast map. The resulting weights were used
as regressors in a General Linear Model (GLM) analysis
that incorporated contrast maps from all IBC tasks. This
approach provided a more sensitive cognitive mapping of
brain functions at the individual level.

Introduction
Functional Magnetic Resonance Imaging (fMRI) has signifi-
cantly advanced our knowledge of human cognition. However,
understanding how different brain functions contribute to task
execution remains challenging. We aimed to investigate brain
function beyond predefined task structures.

We leveraged the Individual Brain Charting (IBC)
project(Pinho et al., 2018, 2024), which provides exten-
sive fMRI data from 12 participants that performed over 80
cognitive tasks. We used the Cognitive Atlas(Poldrack et al.,
2011) (CA), an ontology of cognitive functions, to annotate
over 300 IBC contrast maps with the cognitive processes they
engage. This allowed us to construct a concept space that
describes brain activation in terms of cognitive components.

Using dictionary learning, we assigned weights to the con-
cept space matrix to estimate each cognitive function’s con-
tribution to neural activations. This generated individualized
cognitive maps, providing detailed localization of cognitive
functions across tasks.

Methods
Constructing a Cognitive Feature Space
Figure 1 illustrates our approach. Using IBC dataset
annotations(Aggarwal, Ponce, & Thirion, 2024), we con-
structed a matrix representing the cognitive space. We se-
lected p = 406 ”main contrasts” and assigned cognitive com-
ponents based on annotations, resulting in a binary contrast-
by-component matrix, with entries marked as 1 where a com-
ponent is present. To ensure full-rank, we removed linearly
dependent components, resulting in a final matrix of size
406× 146. We used data from 12 subjects. Data availability

varied slightly per subject: 8 subjects had the full 406× 146
matrix, while others had fewer contrast maps, with matrices
as small as 250×107.

Weighting the Cognitive Feature Space
We reasoned that matrix components did not need to be
strictly binary, as cognitive components likely contribute to ac-
tivation in varying degrees. To model this, we adapted dictio-
nary learning(Mairal, Bach, Ponce, & Sapiro, 2009), a method
of signal decomposition that represents a signal (in this case,
a contrast map) as a sparse linear combination of basis ele-
ments from a learned dictionary.

In our framework, the sparse code represents the cogni-
tive feature space, while the basis dictionary captures possi-
ble voxel activations. Consequently, contrast maps can be de-
scribed as a structured combination of cognitive components
and their corresponding brain locations. To achieve this, we
followed these steps: For each subject, we started with the
initial binary matrix as the sparse code (A) and the collection
of contrast maps as the set of signals to decompose (Y).

1. Dictionary Estimation: We computed the dictionary matrix
(D) using a linear regression of Y onto A, normalizing rows
to `2-norm of 1.

2. Sparse Code Update: Updated the sparse code A using
D and SparseCoder from Scikit-Learn(Pedregosa et al.,
2011), enforcing non-negativity constraints.

3. Objective Function Evaluation: Reconstruction error with
`1-regularized loss was computed to monitor convergence.

Iterations of this process stopped when the objective func-
tion no longer decreased. At the end, each subject’s sparse
code was no longer binary but contained continuous coeffi-
cients that represented contrast-specific weights for cognitive
components. Finally, we averaged the sparse code matrices
across subjects to obtain a single cognitive feature space.

Cognitive Mapping
We then performed a General Linear Model (GLM) analysis
using Nilearn’s SecondLevelModel(Abraham et al., 2014).
The model was fitted with all contrast maps, using the updated
cognitive feature space as the design matrix, where each cog-
nitive component was treated as a regressor. This produced
statistical maps for each component, totaling 107 to 146 con-
cept maps per subject.

Results and Discussion
We used a community-defined concept space from the CA to
describe activation maps from multiple tasks in individual sub-
jects. We achieved a detailed localization of cognitive func-
tions across numerous protocols.



Figure 1: Cognitive Mapping Process. (Pink) Cognitive terms were collected to define the cognitive space. (Green) IBC
contrast maps were annotated based on the occurrence of these terms. The maps display z-values from a standard GLM
analysis. (Blue) Dictionary learning was used to estimate each component’s contribution to the contrast maps. (Orange) These
weights served as regressors in a GLM analysis across all IBC tasks, producing a statistical map for each component. The
colorbar indicates the z-values of the GLM results.

Our approach assumes that tasks (e.g., face recognition)
involve multiple cognitive components (perception, mainte-
nance, etc) with varying degrees of contribution. Using dictio-
nary learning, we assigned weights to these components, de-
composing brain contrast maps accordingly. Figure 2 shows
the variance explained using a binary vs. weighted matrix in
the GLM, with the weighted matrix yielding a better fit.

Figure 2: GLM model fit. R2 maps for sub-06, using the orig-
inal binary matrix (top) and the weighted sparse matrix aver-
aged across all subjects except sub-05 and sub-06 (bottom).

Results aligned with existing literature. Well-established
functions, such as movement localization and visual stimulus
mapping, appear in expected regions of the motor and visual
cortex. However, the richness of the IBC dataset allowed us to

explore further. We were able to map finer domain-specific dif-
ferentiations. For instance, we distinguished between auditory
recognition and auditory word recognition. We also obtained
separate maps for related cognitive processes, such as work-
ing memory and maintenance. Figure 3 illustrates the map-
ping of some cognitive concepts in two representative sub-
jects.

Our method is limited by the inherent nature of annotations
but provides a valuable tool to examine the influence of differ-
ent terms on brain activations and establishes a foundation for
deeper exploration of the cognitive space.

Figure 3: Individual Mapping Results for example subjects.
Nine concept maps were selected and thresholded at z > 3.1.
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