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Motahareh Pourrahimi (motahareh.pourahimi@mail.mcgill.ca)
Integrated Program in Neuroscience, 1033 Pine Ave. W.
Montreal, Quebec, H3A 1A1, Canada

Irina Rish (irina.rish@mila.quebec)
6666 St-Urbain Street, 200
Montreal, Quebec, H2S 3H1, Canada

Pouya Bashivan (pouya.bashivan@mcgill.ca)
Physiology, McGill University, 3655 Promenade Sir William Osler
Montreal, Quebec, H3G 1Y6, Canada

Abstract

Visual search, the process of locating a specific item
among multiple objects, is a key paradigm in studying
visual attention. Due to eccentricity-dependent visual
acuity, many animals constantly selectively sample from
their environment by moving their gaze location, leading
to the formation of search scanpaths, a hallmark of vi-
sual search behavior. While much is known about the
brain networks involved in visual search, our understand-
ing of the neural computations driving this behavior is
limited, leading to challenges in simulating such behav-
ior in-silico. To address this gap, we trained an image-
computable artificial neural network to perform visual
search from pixels in natural scenes. Model’s search
scanpaths (spatiotemporal sequence of fixations) were
highly consistent with those of humans. It captured the
human information integration behavior and relied on
neural representations similar to those observed in the
primate fronto-parietal attentional control network. Exam-
ining the model’s latent space revealed how it uses its in-
ternal state to construct and update a priority map of the
visual space, enabling efficient visual search. Our model
provides concrete predictions about the neural computa-
tions underlying visual search in the primate brain.
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Methods

Natural scene visual search datasets. We generated a
large-scale natural scene search dataset by applying a state-
of-the-art object detection model (He, Gkioxari, Dollar, & Gir-
shick, 2017) on the Places image dataset (Zhou, Khosla,
Lapedriza, Torralba, & Oliva, 2016), extracting masks for 80
object categories. Each search trial consisted of a cue frame
showing an object from the cue category, the search im-
age containing an example of the cued category, and the
ground-truth target mask. We discretized the space by over-
laying a 10x10 grid on the image (Fig. 1A). We tested the
model’s performance and behavioral alignment with humans
on the COCO Search 18 dataset (Chen et al., 2021) (Fig.

1B). Model architecture. General-architecture Visual Search
Model (GVSM) consists of a convolutional neural network
(CNN) pretrained to perform object recognition on Imagenet
(Deng et al., 2009), which has been shown to closely simu-
late neural activity in the visual cortex (Yamins et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014), and a transformer as-
suming the role of the fronto-parietal attentional control net-
work in guiding fixations (Fig. 1C). CNN receives a retinal
image to incorporate the eccentricity-dependent visual acuity
implemented by a multi-resolution crop module (Mnih, Heess,
Graves, & Kavukcuoglu, 2014; Ba, Mnih, & Kavukcuoglu,
2015). Model training. GVSM was trained to perform visual
search following a 2-stage training paradigm inspired by prior
work on saccade-augmented visual categorization (Elsayed,
Kornblith, & Le, 2019). 1) We train the model to predict the
target area given a random sequence of fixations by back-
propagation (Fig. 1D). 2) With fixed transformer parameters,
we train an MLP policy network with RL to optimally select
fixations (Fig. 1E).

Results

GVSM replicates human saccadic behavior. The model
successfully generalized to the COCO Search 18 dataset (Fig.
2A-B). Its search scanpaths were highly consistent with those
of humans as measured by the fixation by fixation scanpath
prediction method (Kimmerer & Bethge, 2021), where the fix-
ation probability maps conditioned on the saccadic history are
compared between model and the humans using various met-
rics (Fig. 2C-G). Moreover, the model also replicates other
human saccadic properties such as saccade sizes, directions,
and their joint distribution (not shown).

Replicating humans’ information integration during
search. GVSM learns a human-like inhibition of return mech-
anism from being solely trained on the task. Each location’s
probability of being fixated consistently increases until fixa-
tion (the peak), suddenly decreasing afterwards. However,
unlike the baselines with hand-engineered inhibition of re-
turn mechanisms, the probability does not drop to zero and
stays at a nonzero lower level, resembling human behavior in
which return fixations happen but with lower probability (Fig.
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Figure 1: A. Example Places Search trial data with chair as
the cued category. B. Example COCO Search 18 trial data
with car as the cued category. C. Model schematic. D. First
stage of training: learning to predict the target area given a
random sequence of fixations (supervised). E. Second stage
of training: learning to optimally select fixations (RL).

3A). Cue-similarity map emerges in GVSM latent space.
We identified robust representations of cue-similarity maps in
GVSM’s latent space, akin to those previously found in the pri-
mate’s fronto-parietal attentional control network (N. Bichot,
Heard, DeGennaro, & Desimone, 2015; Bisley & Mirpour,
2019; Machner et al., 2020; Colby & Goldberg, 1999). To
do this, we fitted linear decoders to predict the cue similar-
ity across space in both retinocentric (relative to gaze loca-
tion) and allocentric (relative to image) reference frames (Fig.
3C-D). Cue similarities were computed by comparing the vi-
sual representation (final feature maps of the CNN) of the cue
frame with that of 1) the fixated retinal image, resulting in a
3x3 retinocentric cue-similarity map, and 2) the full image, re-
sulting in a 10x10 allocentric cue-similarity map.

Geometry of neural representations underlying visual
search. The cue-similarity at different locations across the vi-
sual field could be encoded by a) separate neural subspaces
regardless of their location (a discontinuous representation)
or; b) neural subspaces which their pairwise distances (in the
latent space) reflect the distances between their correspond-
ing locations in the visual field (a continuous representation)
(Fig. 3D). We found a continuous representation for both
retinocentric and allocentric cue-similarity maps in GVSM la-
tent space (Fig. 3E). Further, the generalization accuracy of
the decoders trained on one location and tested on others de-
creased with increasing distance between their correspond-
ing locations in the visual field, confirming a continuous to-
pographical geometry (Fig. 3F). The allocentric cue-simialrity
map was stably encoded in the same subspace across time,
judging by high generalization accuracy of the cue-similarity
decoders across time (Fig. 3G). However, the retinocentric
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Figure 2: A. Example search scanpaths. B. Cumulative per-
formance curve. C. Area Under the Curve. D. Normalized
Scanpath Similarity. E. Information Gain. F. Log Liklihood. G.
Aggregate scanpath prediction score (Mean of C-F).
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cue-similarity map was encoded in a time-varying subspace,
particularly changing from the first to the second time step
(Fig. 3H) with its encoding subspace rotating across time (Fig.
31-J; orthogonal Procrustes analysis).

Discussion

We show that an image-computable neural network model
trained to perform visual search in natural scenes closely repli-
cates human behavior and relies on hidden state representa-
tions closely resembling prior observations from the primate’s
fronto-parietal cortical network. We believe this model pro-
vides an opportunity for the community to test hypotheses
about the neural computations underlying visual search, e.g.
the fixation selection strategy as well as predicting neural re-
sponses of primate brain areas like the Ventral pre-arcuate
(VPA), Lateral intraparietal cortex (LIP), and Frontal eye fields
(FEF) during visual search.
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